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Foreword

I have been fortunate to have lived through a period during which the theory of
liquids passed from being considered to be one of the unsolved problems in physics
to a solved, even mature, field. When I was a student, it was felt that the gas and solid
phases were understood, but the lack of a theory of liquids was believed to be a gap
in our understanding of nature. I was attracted by this perceived gap and wished to
play a role in changing this. In retrospect, it is amusing that an almost satisfactory
theory, the van der Waals theory, was available but unappreciated. A half century
ago, this theory was regarded as being of only pedagogic interest. In this theory, the
contributions of the repulsive and attractive forces are treated by two separate terms.
The repulsive forces in this theory are described in terms of hard-sphere interactions.
Even though it was clear from the beginning that the treatment of the hard-sphere
forces in the van der Waals theory, through a simple free volume, V � Nb, was
inadequate, this was ignored and attention was directed, almost exclusively, to
making empirical changes in the form of the term representing the attractive forces.
Various modifications, not based on theory, were proposed on a “try this, try that”
basis in order to give a more accurate value for pV=NkT at the critical point.
This was misguided; it is now known that the critical point cannot be described
adequately by any analytic equation. Indeed, the theory of the critical point is now
regarded as a separate field. In contrast, the van der Waals treatment of the attractive
forces is well founded. It is the treatment of the repulsive forces in terms of a simple
free volume that is the major problem in the original form of van der Waals theory.
Even though it was clear to van der Waals and his contemporaries that his expression
for the free volume is a poor, even bad, approximation that grossly overestimated
the hard-sphere pressure, it was retained in the various modifications that were
considered. It was the treatment of the attractive forces that drew attention. The
reason for retaining the free volume term of van der Waals was that only a cubic
equation needs to be solved to give the volume in terms of the pressure. This,
certainly, was a convenience in the days before electronic computers and avoided
an iterative solution. However, from the point of view of the development of liquid
state theory, it was a case of putting the cart before the horse. It is now clear that
it was the nature of the gas phase at high densities, rather than the liquid phase,
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viii Foreword

that was poorly understood. It was the gas phase at high densities, in particular the
equation of state of the hard-sphere fluid, that was the unsolved problem. Computer
simulation of hard spheres and the analytic solution of the Percus–Yevick equation
for hard-spheres provided an understanding of the hard sphere gas and changed
everything.

Professor Santos has presented a comprehensive treatment of liquid state theory
with a clear development of integral equation theory, including the Percus–Yevick
theory and the closely related hypernetted-chain and mean spherical theories. The
discussion of the hard-sphere fluid is, appropriately, generous. One notable, and
desirable feature of his book is the collection of photographs of some of the notables
in the development of liquid state theory. Nonscientists tend to think of science as
an impersonable field with scientists working in isolation. In reality, science is quite
sociable with scientists interacting with each other and being stimulated through
this interaction. This sociable interaction in agreeable locations is one reason that
schools, such as the Warsaw schools, are so valuable and enjoyable. The large,
impersonable meetings of scientific societies have their place, but, generally, it is
at small meetings and schools that the real progress is made.

I look forward to placing Professor Santos’ book on my bookshelf as a valuable
reference and am confident that many of our peers will do this also. I am grateful to
Professor Santos for writing this valuable book and for giving me the opportunity to
play a small part in its production.

Provo, UT, USA Douglas Henderson
November 2015



Preface

There exist in the market many excellent textbooks covering equilibrium statistical
mechanics of liquids and dense gases. Why, then, yet another addition to the shelf?
Is there any niche available for it to fill? This is perhaps a question to be answered by
the reader rather than by the author. In any case, this book is not intended whatsoever
to replace any of the good (some of them classical) texts on similar topics but, in the
best scenario, to serve as a supplement to them. Despite the relatively small number
of pages, some of the topics selected here are treated with more detail than in other
books, but this is done at the expense of not addressing some other important topics.
A delicate balance has been sought to have a piece of work that can be used as a
textbook for a one-semester graduate-level course (perhaps by skipping some of the
more advanced points), serving at the same time to the experienced researcher as a
reference for some specific details.

Let me indulge myself in a little bit of personal recollection. Over more than
15 years, I had been producing, for personal use, handwritten lecture notes as a
guide for (intermittent) teaching of graduate-level courses on equilibrium statistical
mechanics in my university. When in the summer of 2012 Jarosław Piasecki invited
me to be one of the speakers at the 5th Warsaw School of Statistical Physics
(Kazimierz Dolny, June 2013), he informed me that speakers were expected to
deliver six 45-min lectures to introduce a chosen subject belonging to statistical
physics in a pedagogical way, inspiring further research. I decided to combine
my experience as instructor of classical statistical mechanics and as researcher on
simple models and approaches in liquid state theory to propose a series of lectures
with the title “Playing with Marbles: Structural and Thermodynamic Properties of
Hard-Sphere Systems.” The lecture notes (slightly more than 90 pages long) were
posted in October 2013 on the arXiv (http://arxiv.org/abs/1310.5578) and published
by Warsaw University Press in the spring of 2014. This would have been the end of
the story had Christian Caron, Executive Publishing Editor of Physics at Springer,
not contacted me in January of 2014 to propose the extension of the Warsaw lecture
notes (which he knew from the arXiv submission) to book length appropriate for the
Lecture Notes in Physics series. After checking that there did not exist any copyright
conflict with Warsaw University Press, and being aware that the lecture notes should
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x Preface

be significantly enlarged, I accepted Christian’s suggestion and presented a formal
proposal. After about 2 years (much longer than anticipated!), the outcome is this
monograph.

The aim of these lecture notes is to present an introduction to the equilibrium
statistical mechanics of liquids and nonideal gases at a graduate-student text-
book level, with emphasis on the basics and fundamentals of the field, but also
with excursions into recent developments. The treatment uses classical (i.e., non-
quantum) mechanics, and no special prerequisites are required, apart from standard
introductory thermodynamics and statistical mechanics. Most of the content applies
to any (short-range) interaction potential, any dimensionality, and (in general) any
number of components. On the other hand, some specific applications deal with
properties of fluids made of particles interacting via the hard-sphere potential or
related potentials. Unavoidably, the selection of topics and the approach employed
may be biased toward those aspects closer to the author’s taste and expertise. My
apologies if that bias turns out to be excessive.

While a large part of the content of this work is not that different from standard
material found in well-established textbooks, some additional results published in
specialized journals along the last few years are also covered. Moreover, the book
includes original matter not published before, to the best of the author’s knowledge.
This can be found essentially as portions of Sects. 3.7–3.9, 4.5, 5.5, 6.9, 7.3, and 7.4.

An attempt has been made to preserve a pedagogical tone as much as possible.
All the graphs (more than 70, many of them entirely new) have been specifically
composed for the book with a uniform layout and aspect ratio. Nearly 30 tables are
also included, not only for displaying diagrams or numerical values in an ordered
way but also as summaries of equations and results that are obtained along the text
but could be difficult to find when browsing through the pages. A list of exercises
(adding to a total number higher than 200) is appended at the end of each chapter. In
some cases they are just intended to fill gaps in the derivations of results presented
in the text, thus stimulating the reader’s self-study. In other cases, however, the
exercises invite the reader to explore alternative or complementary views of the
subjects under consideration.

One of the most difficult choices an author of a physics textbook must face
concerns the choice of symbols and notation for mathematical and physical
quantities. An imperfect balance has been attempted between avoiding repetition
of symbols for different quantities as much as possible without, on the other hand,
resorting to too many nonstandard, fancy, or awkward symbols. The non-exhaustive
list of symbols included at the end of the front matter can alleviate the burden of this
problem.

I am very much convinced that the student and the experienced researcher alike
grasp more convincingly concepts, results, equations, or theories (maybe new to
them) when they are able to associate faces with the names behind those concepts,
results, equations, or theories. After all, science is made by beings as human (albeit
with exceptional minds) as ourselves, and, therefore, the importance of the so-called
human face of science cannot be overemphasized. Paying tribute to the scientists
who have paved or are paving the way to the rest of us, knowing what they look like,
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and prompting our curiosity to know more about their scientific and personal lives
(both usually being equally exciting) are issues that may perfectly belong in a “hard”
monograph as much as in softer magazine articles or layman books. In agreement
with that view, this book includes the photographs of more than 30 scientists,
ranging from the second half of the nineteenth century to today. In some cases
they are mentioned tangentially (if their main contributions overlap only partially
with the content of this book), while in other cases those authors are frequently
cited. Of course, not all those who have made relevant contributions to the field
are represented, but the ones included here have certainly contributed to significant
advances. I apologize for the absence of images of many other main contributors
and practitioners.

The content of this book is organized into seven chapters. Chapters 1 and 2
present brief summaries of equilibrium thermodynamic and statistical-mechanical
relations. They are mainly included to make the lecture notes as self-contained as
possible and to unify the notation, but otherwise most of their content can be skipped
by the knowledgeable reader.

Next, Chap. 3 describes the formal steps needed to derive the virial coefficients
in the expansion of pressure in powers of density in terms of the pair interaction
potential. Extensive use of diagrams is made, but several needed theorems and
lemmas are justified by simple examples without formal proofs. Chapter 3 concludes
with the discussion of approximate equations of state for (both one-component and
multicomponent) hard-sphere fluids that are constructed by making use of the first
few exact virial coefficients.

One of the core chapters of the book is Chap. 4, which starts with the definition
of the reduced distribution functions and, in particular, of the radial distribution
function g.r/ and the direct correlation function c.r/ and continues with the
derivation of the main thermodynamic quantities in terms of g.r/. This includes
the chemical-potential route, usually forgotten in textbooks.

Chapter 5 is perhaps a “side dish.” Whereas one-dimensional systems can be
seen as rather artificial, it is undoubtedly important, at least from pedagogical
and illustrative perspectives, to derive their exact structural and thermophysical
quantities and apply them to explicit model potentials.

The counterpart of Chap. 3 at the level of the radial distribution function makes
most of Chap. 6, where the expansion of g.r/ in powers of density is worked out,
again by diagrammatic manipulations justified with simple examples. The rest of
Chap. 6 is devoted to the proposal of the hypernetted-chain and Percus–Yevick
approximations, plus other approximate integral equations, and the issue of internal
consistency among different thermodynamic routes in approximate theories.

Finally, Chap. 7 covers the analytical solutions of the Percus–Yevick approx-
imation for hard spheres, sticky hard spheres, and their mixtures, derived as
the simplest implementations of rational-function approximations for an auxiliary
function defined in Laplace space. The latter approach is then applied to improve
the Percus–Yevick solution for hard spheres and to circumvent the absence of an
analytical solution of the Percus–Yevick approximation for square-well and square-
shoulder potentials. Although such an approach is by now well established in the



xii Preface

specialized literature, to the author’s knowledge hardly other textbook on the subject
includes the latter material.

Let me finish this already too long preface just by saying that I hope these lecture
notes might be useful to students who want to be introduced to the exciting field of
disordered condensed matter, to instructors who might find something profitable for
their own courses, and to researchers who might need to have at hand a reference to
quickly find a certain needed result.

Badajoz, Spain Andrés Santos
December 2015
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Chapter 1
Summary of Thermodynamic Potentials

This chapter provides a brief overview of some of the most important thermody-
namic relations that may appear in the book. It also serves to fix notation and
nomenclature. Special attention is given to the thermodynamic potential appropriate
to each set of possible thermodynamic variables. For generality, the relations are
referred to multicomponent fluid systems (mixtures) rather than to pure systems.
Otherwise, the treatment is restricted to simple classical fluids and does not include
magnetic or electric properties, external forces, surface properties, quantum effects,
etc.

1.1 Entropy: Isolated Systems

In a reversible process, the first and second laws of thermodynamics in a fluid
mixture can be combined as [1, 2]

TdSDdE C pdV �
X

�

��dN� ; (1.1)

where S is the entropy, E is the internal energy, V is the volume of the fluid, and N�
is the number of particles of species �. The total number of particles (N) and the
mole fraction of each species (x�) are defined as

N D
X

�

N� ; x� D N�
N
: (1.2)
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2 1 Summary of Thermodynamic Potentials

The partial and total number densities are

n� D N�
V
; n D N

V
D
X

�

n� : (1.3)

The quantities S, E, V , and N� are extensive, i.e., they scale with the size
of the system. The coefficients of the differentials in (1.1) are the conjugate
intensive quantities: the absolute temperature (T), the pressure ( p), and the chemical
potentials (��).

Equation (1.1) shows that the natural variables of the entropy are E, V , and
fN�g, i.e., S.E;V; fN�g/. This implies that S is the right thermodynamic potential
in isolated systems: at given E, V , and fN�g, S is maximal in equilibrium. The
respective partial derivatives give the intensive quantities:

1

T
D
�

@S

@E

�

V;fN�g
; (1.4a)

p

T
D
�

@S

@V

�

E;fN�g
; (1.4b)

��

T
D �

�

@S

@N�

�

E;V;fN�¤�g
: (1.4c)

The extensive nature of S, E, V , and fN�g implies the extensivity condition

S.�E; �V; f�N�g/ D �S.E;V; fN�g/; (1.5)

where � is any positive number. Application of Euler’s homogeneous function
theorem yields

S.E;V; fN�g/ D E

�

@S

@E

�

V;fN�g
C V

�

@S

@V

�

E;fN�g
C
X

�

N�

�

@S

@N�

�

E;V;fN�¤�g
:

(1.6)

Using (1.4), we obtain the identity

TS D E C pV �
X

�

��N� : (1.7)

This is the so-called fundamental equation of thermodynamics. Differentiating
(1.7) and subtracting (1.1) one arrives at the Gibbs–Duhem relation (see Figs. 1.1
and 1.2), i.e.,

SdT � Vdp C
X

�

N�d�� D 0 : (1.8)
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Fig. 1.1 Josiah Willard
Gibbs (1839–1903)
(Photograph from Wikimedia
Commons, http://commons.
wikimedia.org/wiki/File:
Josiah_Willard_Gibbs_-
from_MMS-.jpg)

Fig. 1.2 Pierre Duhem
(1861–1916)
(Photograph from Wikimedia
Commons, https://commons.
wikimedia.org/wiki/File:
Pierre_Duhem.jpg)

Equation (1.1) can be inverted to express dE as a linear combination of dS, dV ,
and fdN�g. Therefore, S, V , and fN�g, are the natural variables of the internal energy
E.S;V; fN�g/, so that

T D
�

@E

@S

�

V;fN�g
; (1.9a)

p D �
�

@E

@V

�

S;fN�g
; (1.9b)

�� D
�

@E

@N�

�

S;V;fN�¤�g
: (1.9c)

As a consequence, in an adiabatic system (i.e., at fixed S, V , and fN�g), the internal
energy is minimal in equilibrium.

http://commons.wikimedia.org/wiki/File:Josiah_Willard_Gibbs_-from_MMS-.jpg
http://commons.wikimedia.org/wiki/File:Josiah_Willard_Gibbs_-from_MMS-.jpg
http://commons.wikimedia.org/wiki/File:Josiah_Willard_Gibbs_-from_MMS-.jpg
http://commons.wikimedia.org/wiki/File:Josiah_Willard_Gibbs_-from_MMS-.jpg
https://commons.wikimedia.org/wiki/File:Pierre_Duhem.jpg
https://commons.wikimedia.org/wiki/File:Pierre_Duhem.jpg
https://commons.wikimedia.org/wiki/File:Pierre_Duhem.jpg
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1.2 Helmholtz Free Energy: Closed Systems

From a practical point of view, it is usually more convenient to choose the
temperature instead of the internal energy or the entropy as a control variable. In
that case, the adequate thermodynamic potential is no longer either the entropy or
the internal energy, respectively, but the Helmholtz free energy F (after Hermann L.
F. von Helmholtz, see Fig. 1.3). This thermodynamic potential is defined from S or
E through the Legendre transformation

F.T;V; fN�g/ � E � TS D �pV C
X

�

��N� ; (1.10)

where in the last step use has been made of (1.7). From (1.1) we obtain

dF D �SdT � pdV C
X

�

��dN� ; (1.11)

so that

S D �
�

@F

@T

�

V;fN�g
; (1.12a)

p D �
�

@F

@V

�

T;fN�g
; (1.12b)

�� D
�

@F

@N�

�

T;V;fN�¤�g
: (1.12c)

Fig. 1.3 Hermann Ludwig
Ferdinand von Helmholtz
(1821–1894)
(Photograph from Wikimedia
Commons, http://commons.
wikimedia.org/wiki/File:
Hermann_von_Helmholtz.
jpg)

http://commons.wikimedia.org/wiki/File:Hermann_von_Helmholtz.jpg
http://commons.wikimedia.org/wiki/File:Hermann_von_Helmholtz.jpg
http://commons.wikimedia.org/wiki/File:Hermann_von_Helmholtz.jpg
http://commons.wikimedia.org/wiki/File:Hermann_von_Helmholtz.jpg
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The Helmholtz free energy is the adequate thermodynamic potential in a closed
system, that is, a system that cannot exchange mass with the environment but can
exchange energy. At fixed T, V , and fN�g, F is minimal in equilibrium.

1.3 Gibbs Free Energy: Isothermal–Isobaric Systems

If, instead of the volume, the independent thermodynamic variable is pressure, we
need to perform an extra Legendre transformation from F to define the free enthalpy
or Gibbs free energy (after Josiah W. Gibbs, see Fig. 1.1) as

G.T; p; fN�g/ � F C pV D
X

�

��N� : (1.13)

The second equality shows that the chemical potential �� can be interpreted as
the contribution of each particle of species � to the total Gibbs free energy. Thus,
the Gibbs free energy per particle can be viewed as a species-averaged chemical
potential,

G

N
D
X

�

x��� � N� : (1.14)

The differential relations for G become

dG D �SdT C Vdp C
X

�

��dN� ; (1.15)

S D �
�

@G

@T

�

p;fN�g
; (1.16a)

V D
�

@G

@p

�

T;fN�g
; (1.16b)

�� D
�

@G

@N�

�

T;p;fN�¤�g
: (1.16c)

Needless to say, G is minimal in equilibrium if one fixes T, p, and fN�g.
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1.4 Grand Potential: Open Systems

In an open system, not only energy but also particles can be exchanged with the
environment. In that case, we need to replace fN�g by f��g as independent variables
and define the grand potential˝ from F via a new Legendre transformation:

˝.T;V; f��g/ � F �
X

�

��N� D �pV: (1.17)

Interestingly, the second equality shows that �˝=V is not but the pressure, except
that it must be seen as a function of temperature and the chemical potentials. Now
we have

d˝ D �SdT � pdV �
X

�

N�d�� ; (1.18)

S D �
�

@˝

@T

�

V;f��g
; (1.19a)

p D �
�

@˝

@V

�

T;f��g
D �˝

V
; (1.19b)

N� D �
�

@˝

@��

�

T;V;f��¤�g
: (1.19c)

It must be stressed that all the equilibrium thermodynamic potentials are point
functions. This means that, in contrast to the case of path functions (like work and
heat), their magnitudes depend on the thermodynamic state only and not on how the
system reaches that state.

1.5 Response Functions and Maxwell Relations

We have seen that the thermodynamic variables E $ T (or S $ T), V $ p,
and N� $ �� appear as extensive $ intensive conjugate pairs. Depending on
the thermodynamic potential of interest, one of the members of the pair acts as
independent variable and the other one is obtained by differentiation, as (1.4), (1.9),
(1.12), (1.16), and (1.19) show. Those relations are also displayed in Table 1.1. If an
additional derivative is taken, one then obtains the so-called response functions. For
example, the heat capacities at constant volume and at constant pressure are defined
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Table 1.1 Thermodynamic variables as derived from different thermodynamic potentials

Thermodynamic potentials

Variable S.E;V; fN�g/ E.S;V; fN�g/ F.T;V; fN�g/ G.T; p; fN�g/ ˝.T;V; f��g/
T

�

@S

@E

��1

V;fN�g

�

@E

@S

�

V;fN�g

X X X

p T

�

@S

@V

�

E;fN�g

�
�

@E

@V

�

S;fN�g

�
�

@F

@V

�

T;fN�g

X �˝
V

�� �T

�

@S

@N�

�

E;V;fN�g

�

@E

@N�

�

S;V;fN�g

�

@F

@N�

�

T;V;fN�g

�

@G

@N�

�

T;p;fN�g

X

E X F C TS G C TS � pV ˝ C TS

CX
�

��N�

S X �
�

@F

@T

�

V;fN�g

�
�

@G

@T

�

p;fN�g

�
�

@˝

@T

�

V;f��g

V X X X
�

@G

@p

�

T;fN�g

X

N� X X X X �
�

@˝

@��

�

T;p;f��g

The check marks denote the independent variables for each potential

as

CV �
�

@E

@T

�

V;fN�g
D T

�

@S

@T

�

V;fN�g
D T

�

@2F

@T2

�

V;fN�g
; (1.20a)

Cp � T

�

@S

@T

�

p;fN�g
D �T

�

@2G

@T2

�

p;fN�g
: (1.20b)

Another response function is the thermal expansivity

˛p � 1

V

�

@V

@T

�

p;fN�g
D 1

V

�

@2G

@T@p

�

fN�g
D � 1

V

�

@S

@p

�

T;fN�g
: (1.21)

The equivalence between the second and fourth terms in (1.21) is an example
of a Maxwell relation (see Fig. 1.4), i.e., the equivalence between the two second
derivatives of a thermodynamic potential with respect to two given variables.
Another simple Maxwell relation is

�

@p

@��

�

T;V;f��¤�g
D � 1

V

�

@˝

@��

�

T;V;f��¤�g
D N�

V
D n� : (1.22)

An important response function is the isothermal compressibility. It is defined as
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Fig. 1.4 James Clerk
Maxwell (1831–1879)
(Photograph from Wikimedia
Commons, https://commons.
wikimedia.org/wiki/File:
James_Clerk_Maxwell_big.
jpg)

�T � � 1
V

�

@V

@p

�

T;fN�g
D � 1

V

�

@2G

@p2

�

T;fN�g
: (1.23)

Equivalently, the inverse isothermal compressibility is given by

��1
T � �V

�

@p

@V

�

T;fN�g
D V

�

@2F

@V2

�

T;fN�g
: (1.24)

The isothermal compressibility can also be expressed in other alternative ways.
Starting from the mathematical identity

�

@x

@y

�

z

�

@y

@x

�

x

�

@z

@x

�

y

D �1 ; (1.25)

and particularizing to a one-component system, one has

� 1 D
�

@N

@p

�

T;V

�

@p

@V

�

T;N

�

@V

@N

�

T;p

D
�

@N

@p

�

T;V

�

� 1

V�T

�

V

N
; (1.26)

where in the second step use has been made of the first equality of (1.24) as well as
of the property .@V=@N/T;p D V=N (as a consequence of the intensive nature of T
and p). Thus, (1.26) implies

�T D 1

N

�

@N

@p

�

T;V

: (1.27)

https://commons.wikimedia.org/wiki/File:James_Clerk_Maxwell_big.jpg
https://commons.wikimedia.org/wiki/File:James_Clerk_Maxwell_big.jpg
https://commons.wikimedia.org/wiki/File:James_Clerk_Maxwell_big.jpg
https://commons.wikimedia.org/wiki/File:James_Clerk_Maxwell_big.jpg
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Comparison with the first equality of (1.23) shows that what actually matters in �T

is the relative increase of density n D N=V upon an increase of pressure, i.e.,

�T D 1

n

�

@n

@p

�

T

: (1.28)

In (1.23) the increase of density takes place by decreasing the volume at constant
number of particles, while in (1.27) it takes place by increasing the number of
particles at constant volume.

Yet another equivalent form for �T is obtained from the chain rule relation

�

@N

@p

�

T;V

D
�

@N

@�

�

T;V

�

@�

@p

�

T;V

D
�

@N

@�

�

T;V

1

n
; (1.29)

where in the second step the result (1.22) for a one-component system of chemical
potential � has been used. Therefore, (1.27) yields

�T D 1

nN

�

@N

@�

�

T;V

: (1.30)

Equations (1.27) and (1.30) are not difficult to extend to the case of mixtures. In
the same spirit as in (1.28), we note that, being an intensive quantity, p depends on
V and fN�g only through the number densities fn�g. Thus,

��1
T D �V

�

@p

@V

�

T;fN�g
D
X

˛

n˛

�

@p

@n˛

�

T;fn�¤˛g
D
X

˛

N˛

�

@p

@N˛

�

T;V;fN�¤˛g
:

(1.31)

This generalizes (1.27). Next, in analogy with (1.29), we use

�

@p

@N˛

�

T;V;fN�¤˛g
D
X

�

�

@p

@��

�

T;V;f��¤� g

�

@��

@N˛

�

T;V;fN�¤˛g

D
X

�

n�

�

@��

@N˛

�

T;V;fN�¤˛g
; (1.32)

where in the second step use has been made of (1.22) again. Insertion of (1.32) into
(1.31) yields

��1
T D V

X

˛

X

�

n˛n�

�

@��

@N˛

�

T;V;fN�¤˛g
; (1.33)

what represents the multicomponent generalization of (1.30).
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Since the isothermal compressibility has dimensions of inverse pressure, it is
convenient to define the isothermal susceptibility

�T D nkBT�T (1.34)

as a closely related dimensionless quantity.
To conclude this chapter, and for further use, we introduce the inverse tem-

perature parameter ˇ, the compressibility factor Z (not to be confused with the
isothermal compressibility �T ), the Helmholtz free energy per particle a, and the
internal energy per particle u:

ˇ � 1

kBT
; Z � ˇp

n
; a � F

N
; u � E

N
: (1.35)

Here, kB is the Boltzmann constant. In terms of the quantities defined in (1.35),
(1.12) can be rewritten as

u D @ .ˇa/

@̌
; (1.36a)

Z D n
@ .ˇa/

@n
; (1.36b)

�� D @ .na/

@n�
: (1.36c)

In (1.36a) and (1.36b) the intensive potential a is seen as a function of .ˇ; n; fx�g/,
while it is seen as a function of .ˇ; fn�g/ in (1.36c). The fundamental equation of
thermodynamics (1.7) is equivalent to

X

�

x�ˇ�� D @ .nˇa/

@n
D ˇa C Z : (1.37)

Moreover, from (1.36a) and (1.36b) we can easily derive the Maxwell relation

n
@u

@n
D @Z

@̌
: (1.38)

Also, (1.28) and (1.34) can be combined to yield

��1
T D @.nZ/

@n
: (1.39)
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Exercises

1.1 The enthalpy is defined by the Legendre transformation H D E CpV . What are
then the “natural” variables of H? Add a new column in Table 1.1 with the relations
corresponding to H.

1.2 Construct a thermodynamic potential whose natural variables are S, V , and
f��g. Add a new column in Table 1.1 with the relations corresponding to this new
potential.

1.3 Prove that it is not possible to construct a thermodynamic potential whose
natural variables are T, p, and f��g. Hint: Use the Gibbs–Duhem relation (1.8).

1.4 Check (1.20)–(1.24).

1.5 Check the steps leading to (1.33).

1.6 Prove (1.36).
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Chapter 2
Summary of Equilibrium Statistical Ensembles

In this chapter a summary of the main equilibrium ensembles is presented,
essentially to fix part of the notation that will be needed later on. The phase-space
probability density associated with each ensemble is derived by maximization of
the Gibbs entropy under the appropriate constraints. For simplicity, most of this
chapter is restricted to one-component systems, although the extension to mixtures
is straightforward and is presented in the last section.

2.1 Phase Space

Let us consider a classical system made of N identical (and hence indistinguishable)
point particles enclosed in a volume V in d dimensions. In classical mechanics,
the dynamical state of the system is characterized by the N position vectors
fr1; r2; : : : ; rNg and the N momentum vectors fp1;p2; : : : ;pNg. In what follows, we
will employ the following short-hand notation

• rN D fr1; r2; : : : ; rNg ; drN D dr1dr2 � � � drN ,
• pN D fp1;p2; : : : ;pNg ; dpN D dp1dp2 � � � dpN ,
• xN D frN ;pNg ; dxN D drNdpN .

Thus, the whole microscopic state of the system (microstate) is represented by
a single point xN in the .2d � N/-dimensional phase space (see Fig. 2.1). The time
evolution of the microstate xN is governed by the Hamiltonian of the system HN.xN/

through the classical Hamilton’s equations [1].
Henceforth, and in order to make contact with thermodynamics, we will gener-

ally assume that the number of particles N and the volume V are so large that specific

© Springer International Publishing Switzerland 2016
A. Santos, A Concise Course on the Theory of Classical Liquids,
Lecture Notes in Physics 923, DOI 10.1007/978-3-319-29668-5_2
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14 2 Summary of Equilibrium Statistical Ensembles

Fig. 2.1 Sketch of the phase
space of a system of N
identical particles. The
horizontal axis represents the
d � N position variables (d
components for each
particle), while the vertical
axis represents the d � N
momentum variables. A
differential phase-space
volume dxN around a point
xN is represented

quantities (i.e., extensive quantities per particle or per unit volume) are independent
of N or V . This is equivalent to formally taking the so-called thermodynamic limit,
whereby

N ! 1
V ! 1

�

with a finite ratio N=V : (2.1)

Given the practical impossibility of describing the system at a microscopic level,
a statistical description is needed. Thus, we define the phase-space probability
density �N.xN/ such that �N.xN/dxN is the probability that the microstate of the
system lies inside an infinitesimal (hyper)volume dxN around the phase-space point
xN . The ensemble average of a certain dynamical variable AN.xN/ is

hAi D
Z

dxN AN.xN/�N.xN/ : (2.2)

Here, it is understood that the total number of particles (N) is fixed and the position
integral for each particle runs over a fixed volume (V) of the system. Otherwise, the
expression for the ensemble average may involve summation over the number of
particles and/or integration over the system volume [see (2.30) and (2.44) below].

2.2 Gibbs Entropy Functional

The concept of a phase-space probability density is valid both out of equilibrium
(where, in general, it changes with time according to the Liouville theorem [2, 3])
and in equilibrium (where it is stationary). In the latter case �N.xN/ can be obtained
for isolated, closed, open, . . . systems by following logical steps and starting from
the equal a priori probability postulate for isolated systems [4]. Here we follow an
alternative (but equivalent) method based on information-theory arguments [3, 5, 6].
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Let us define the Gibbs entropy functional

S Œ�N � D �kB

Z

dxN �N.xN/ ln
�

CN�N.xN/
�

; (2.3)

where

CN � NŠhdN (2.4)

is the quantum of phase-space volume. In (2.4) h is the Planck constant, the
coefficient hdN being introduced to comply with Heisenberg’s uncertainty principle
and also to preserve the non-dimensional character of the argument of the logarithm.
Moreover, the factorial NŠ accounts for the fact that two apparently different
microstates which only differ on the particle labels are physically the same
microstate, thus avoiding the Gibbs paradox [7]. The factorial NŠ must be removed
from CN if the particles are distinguishable.

Equation (2.3) applies to systems with a fixed number of particles N. On the
other hand, if the system is allowed to exchange particles with the environment,
microstates with different N exist, so that one needs to define a phase-space
probability density �N.xN/ for each N � 0. In that case, the entropy functional
becomes

S Œ�N � D �kB

1
X

ND0

Z

dxN �N.xN/ ln
�

CN�N.xN/
�

: (2.5)

Analogously, if the number of particles N is fixed but the volume V occupied by
the particles can vary (formally) from zero to infinity, the phase-space probability
density �N.xN/ depends on V . It is defined such that �N.xN/dxNdV is the probability
that the particles occupy a volume between V and V C dV and the microstate lies
inside an infinitesimal (hyper)volume dxN around the phase-space point xN . The
corresponding entropy functional is then

S Œ�N � D �kB

Z 1

0

dV
Z

dxN �N.xN/ ln
�

CNV0�N.xN/
�

; (2.6)

where V0 is an arbitrary volume scale factor (needed to keep the correct dimensions).
Now, the basic postulate consists in asserting that, out of all possible phase-

space probability distribution functions �N consistent with given constraints (which
define the ensemble of accessible microstates), the equilibrium function �eq

N is the
one that maximizes the entropy functional S Œ�N �. Once �eq

N is known, connection
with thermodynamics is made through the identification of S D S Œ�

eq
N � as the

equilibrium entropy.
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2.3 Microcanonical Ensemble: Isolated Systems

The microcanical ensemble describes an isolated system and thus it is characterized
by fixed values of V , N, E (the latter with a tolerance 	E, in accordance with the
uncertainty principle). Therefore, the basic constraint is the normalization condition

Z

E�HN .xN /�EC	E
dxN �N.xN/ D 1 : (2.7)

Maximization of the entropy functional (2.3) just says that �N.xN/ D const for all
the accessible microstates E � HN.xN/ � E C	E. Thus,

�N.xN/ D
(

ŒCN!	E.E;V;N/�
�1 ; E � HN.xN/ � E C	E ;

0 ; otherwise ;

D ˘E;EC	E
�

HN.xN/
�

CN!	E.E;V;N/
; (2.8)

where ˘a;b.x/ is the boxcar function, which is equal to 1 for a � x � b and 0
otherwise. The normalization function

!	E.E;V;N/ D 1

CN

Z

E�HN .xN /�EC	E
dxN (2.9)

is the phase-space volume comprised between the hyper-surfaces HN.xN/ D E and
HN.xN/ D E C	E, in units of CN . We will refer to the dimensionless quantity !	E

as the microcanonical partition function. It is interesting to note that, taking into
account the representation

ı.x � a/ D lim
	a!0

˘a;aC	a.x/

	a
(2.10)

of the Dirac delta function, the microcanonical partition function can be rewritten as

!	E.E;V;N/ � 	E

CN

Z

dxN ı.HN.xN/� E/ : (2.11)

By insertion of (2.8) into (2.3) one immediately sees that !	E.E;V;N/ is directly
related to the equilibrium entropy as

S.E;V;N/ D kB ln!	E.E;V;N/ : (2.12)

In this expression, the specific value of 	E becomes irrelevant in the thermody-
namic limit (as long as 	E 	 E).
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Equation (2.12) means that entropy is proportional to the logarithm of the number
of microstates with energy E (within an allowance 	E). This is usually referred to
as the Boltzmann entropy. An alternative definition of entropy in the microcanonical
ensemble is [8]

S.E;V;N/ D kB ln N!.E;V;N/ ; (2.13a)

N!.E;V;N/ � 1

CN

Z

0�HN .xN /�E
dxN ; (2.13b)

where now the so-called Gibbs entropy is proportional to the logarithm of the
number of microstates with an energy smaller than or equal to E. For “normal”
systems, like classical liquids, energy does not have an upper bound and the function
!	E.E/ grows so rapidly with E that ln N!.E/ � ln!	E.E/ in the thermodynamic
limit, and hence both definitions (2.12) and (2.13) become fully equivalent in
that limit [8]. Such an equivalence, however, does not hold for small systems
or for systems where energy has an upper bound Emax. In the latter case, the
function !	E.E/ decreases with increasing energy as Emax is approached from
below, while the cumulative function N!.E/ monotonically increases with E. As a
consequence, the thermodynamic relation (1.4a) can give rise to negative absolute
temperatures [9, 10] if the Boltzmann entropy is used, while the Gibbs entropy
always predicts positive-definite temperatures. The question of which definition of
entropy (Boltzmann’s versus Gibbs’s) is more adequate for small systems or when
the energy is bounded is still open [11–17]. On the other hand, since we will always
deal here with classical normal liquids in the thermodynamic limit, (2.12) can be
safely adopted for the microcanonical entropy.

Making use of (1.4) (see also Table 1.1), the thermodynamic variables conjugate
to E, V , and N can be obtained from !	E as

ˇ � 1

kBT
D @

@E
ln!	E.E;V;N/ ; (2.14a)

ˇp D @

@V
ln!	E.E;V;N/ ; (2.14b)

˛ � �ˇ� D @

@N
ln!	E.E;V;N/ : (2.14c)

The inverse temperature parameter ˇ has dimensions of inverse energy and is
usually employed in statistical-mechanical formulas more frequently than the
temperature T itself [see (1.35)]. Analogously, ˛ is a dimensionless parameter
defined as the opposite of the chemical potential scaled with the thermal energy
kBT. The parameter ˛ is usually preferred over � in statistical-mechanical formal
expressions. Its exponential defines the fugacity

z � e�˛ � eˇ� : (2.15)
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2.4 Canonical Ensemble: Closed Systems

Now the system can have any value of the total energy E. However, we are free to
prescribe a given value of the average energy hEi D hHNi. Therefore, the constraints
in the canonical ensemble are

Z

dxN �N.xN/ D 1 ; (2.16a)

Z

dxN HN.xN/�N.xN/ D hEi : (2.16b)

The maximization of the entropy functional (2.3) subject to the constraints (2.16)
can be carried out through the Lagrange multiplier method with the result

�N.xN/ D e�ˇHN .xN /

CNZN.ˇ;V/
; (2.17)

where ˇ is the Lagrange multiplier associated with the constraint on hEi and the
canonical partition function ZN is determined from the normalization condition as

ZN.ˇ;V/ D 1

CN

Z

dxN e�ˇHN .xN / : (2.18)

Multiplying both sides of (2.18) by 1 D R

dE ı.HN.xN/ � E/ and using (2.11), the
partition function can alternatively be written as

ZN.ˇ;V/ D 1

	E

Z

dE e�ˇE!	E.E;V;N/ : (2.19)

Substitution of (2.17) into (2.3) and use of (2.16) yields

S D kB .lnZN C ˇhEi/ : (2.20)

Comparison with (1.10) (where now the internal energy corresponds to hEi) allows
one to identify ˇ D 1=kBT and

F.T;V;N/ D �kBT lnZN.ˇ;V/ : (2.21)

Thus, the Lagrange multiplier ˇ acquires a physical meaning as the inverse tem-
perature parameter already defined in (1.35) and (2.14a). Besides, in the canonical
ensemble the connection with thermodynamics is conveniently established via the
Helmholtz free energy rather than via the entropy.
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As an average of a phase-space dynamical variable, the internal energy can be
directly obtained from lnZN as

hEi D �@ lnZN

@̌
: (2.22)

More in general, the energy moments are

˝

Ek
˛ D .�1/k

ZN

@kZN

@̌ k
: (2.23)

In particular, energy fluctuations in a closed system are measured by the variance

˝

E2
˛ � hEi2 D @2 lnZN

@̌ 2
D kBT2CV ; (2.24)

where in the last step use has been made of (1.20a). Since both the internal energy
hEi and the heat capacity CV are extensive quantities (i.e., hEi / N, CV / N),

(2.24) implies that the relative standard deviation
q

hE2i � hEi2= hEi scales with

N�1=2. Therefore, in the thermodynamic limit (2.1) the energy fluctuations become
negligible and the canonical ensemble becomes equivalent to the microcanonical
one.

Using (2.23), it is possible to generalize (2.24) as

K
.k/

E D .�1/k @
k lnZN

@̌ k
; (2.25)

where K
.k/

x denotes the kth cumulant of a random variable x. The first few
cumulants (2 � k � 6) are K

.2/
x D h.ıx/2i, K

.3/
x D h.ıx/3i, K

.4/
x D

h.ıx/4i � 3h.ıx/2i2, K .5/
x D h.ıx/5i � 10h.ıx/3ih.ıx/2i, and K

.6/
x D h.ıx/6i �

15h.ıx/4ih.ıx/2i � 10h.ıx/3i2 C 30h.ıx/2i3, where ıx � x � hxi.
The microcanonical$canonical ensemble equivalence can be further explored

by considering the energy probability density function in the canonical ensemble,

PN.EIˇ;V/ D
Z

dxN ı.HN.xN/ � E/�N.xN/ D e�ˇE!	E.E;V;N/

ZN.ˇ;V/
; (2.26)

where (2.11) has been used again. While !	E.E;V;N/ is a rapidly increasing
function of E (in classical systems with no upper bound for energy), e�ˇE is a
rapidly decreasing function. Thus, PN.E/ presents an extremely sharp peak at a
certain value E D eE. The extremal condition @ lnPN.E/=@EjEDeE D 0 implies that
eE is implicitly given by

ˇ D @ ln!	E.E;V;N/

@E

ˇ

ˇ

ˇ

ˇ

EDeE
: (2.27)
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Comparison with (2.14a) shows that, at given T, N, and V , the most probable energy
eE in a closed system coincides with the unique (except for the energy tolerance	E)
energy value in an isolated system.

From (1.12b) and (1.12c) (see also Table 1.1), we note that the pressure and the
chemical potential are obtained from the partition function as

ˇp D @

@V
lnZN.ˇ;V/ ; (2.28a)

˛ � �ˇ� D @

@N
lnZN.ˇ;V/ : (2.28b)

2.5 Grand Canonical Ensemble: Open Systems

In an open system neither the energy nor the number of particles are determined but
we can choose to fix their average values. As a consequence, the constraints are

1
X

ND0

Z

dxN �N.xN/ D 1 ; (2.29a)

1
X

ND0

Z

dxN HN.xN/�N.xN/ D hEi ; (2.29b)

1
X

ND0
N
Z

dxN �N.xN/ D hNi : (2.29c)

In general, given a dynamical variable AN.xN/, its grand canonical ensemble
average is

hAi D
1
X

ND0

Z

dxN AN.xN/�N.xN/ : (2.30)

The solution to the maximization problem of the entropy functional (2.5) with
the constraints (2.29) is

�N.xN/ D e�˛Ne�ˇHN .xN /

CN�.ˇ;V; ˛/
; (2.31)

where ˛ and ˇ are Lagrange multipliers and the grand partition function is

�.ˇ;V; ˛/ D
1
X

ND0

e�˛N

CN

Z

dxN e�ˇHN .xN / : (2.32)
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From (2.18), the grand partition function can be rewritten as

�.ˇ;V; ˛/ D
1
X

ND0
e�˛NZN.ˇ;V/ : (2.33)

Inserting (2.31) into (2.5), it is straightforward to check that the equilibrium entropy
becomes

S D kB .ln� C ˇhEi C ˛ hNi/ : (2.34)

From comparison with the first equality of (1.17) we can identify ˇ D 1=kBT ,
˛ D �ˇ�, and

˝.T;V; �/ D �kBT ln�.ˇ;V; ˛/ : (2.35)

As happened in the canonical ensemble, the Lagrange multiplier ˇ coincides with
the inverse temperature parameter defined by (1.35) and (2.14a). Analogously, the
multiplier ˛ is not but the scaled chemical potential defined by (2.14c).

The average energy and number of particles can be obtained from the grand
partition function as

hEi D �@ ln�

@̌
; (2.36a)

hNi D �@ ln�

@˛
: (2.36b)

As for the pressure, according to (1.17) or (1.19b), we simply have

ˇpV D ln�.ˇ;V; ˛/ : (2.37)

Similarly to (2.23), the moments associated with the energy and the number of
particles are

˝

Ek
˛ D .�1/k

�

@k�

@̌ k
; (2.38a)

˝

Nk
˛ D .�1/k

�

@k�

@˛k
: (2.38b)
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Consequently, the fluctuation relations become

˝

E2
˛ � hEi2 D @2 ln�

@̌ 2
D kBT2CV ; (2.39a)

˝

N2
˛ � hNi2 D @2 ln�

@˛2
D �@ hNi

@˛
: (2.39b)

Recalling that ˛ D �ˇ� and taking into account the thermodynamic identity (1.30),
we can write

˝

N2
˛ � hNi2 D nkBT hNi �T : (2.40)

Since the isothermal compressibility is an intensive quantity, the relative standard

deviation
q

hN2i � hNi2= hNi scales with hNi�1=2 and thus decays in the thermo-
dynamic limit. In that limit the microcanonical, canonical, and grand canonical
ensembles become equivalent. On the other hand, as one approaches the vapor–
liquid critical point the isothermal compressibility diverges (critical opalescence
phenomenon) and so do the density fluctuations in a finite-volume cell.

As in (2.25), the cumulants of energy and number of particles in the grand
canonical ensemble are

K
.k/

E D .�1/k @
k ln�

@̌ k
; (2.41a)

K
.k/

N D .�1/k @
k ln�

@˛k
: (2.41b)

This generalizes (2.39) to k � 3.
In analogy with (2.26), we can define the number probability distribution

function

P.NIˇ;V; ˛/ D
Z

dxN �N.xN/ D e�˛NZN.ˇ;V/

�.ˇ;V; ˛/
: (2.42)

This function is the product of a rapidly increasing function (ZN) and a rapidly
decreasing function (e�˛N) of N, what gives rise to a sharp maximum at a value
N D eN given by the implicit condition

˛ D @ lnZN.ˇ;V/

@N

ˇ

ˇ

ˇ

ˇ

NDeN
: (2.43)

The agreement with (2.28b) reinforces the canonical$grand canonical ensemble
equivalence for large systems (thermodynamic limit).
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2.6 Isothermal–Isobaric Ensemble: Isothermal–Isobaric
Systems

In this ensemble, the volume is a fluctuating quantity and only its average value is
fixed. Thus, similarly to the grand canonical ensemble, the constraints are

Z 1

0

dV
Z

dxN �N.xN/ D 1 ; (2.44a)

Z 1

0

dV
Z

dxN HN.xN/�N.xN/ D hEi ; (2.44b)

Z 1

0

dV V
Z

dxN �N.xN/ D hVi : (2.44c)

Not surprisingly, the solution to the maximization problem of the Gibbs entropy
functional (2.6) is

�N.xN/ D e��Ve�ˇHN .xN /

V0CN
N.ˇ; �/
; (2.45)

where � and ˇ are again Lagrange multipliers, and the isothermal–isobaric partition
function is


N.ˇ; �/ D 1

V0CN

Z 1

0

dV e��V
Z

dxN e�ˇHN .xN / : (2.46)

Again, use of (2.18) allows us to write


N.ˇ; �/ D 1

V0

Z 1

0

dV e��VZN.ˇ;V/ : (2.47)

Taking into account (2.6), the entropy becomes

S D kB .ln
N C ˇhEi C � hVi/ : (2.48)

From comparison with (1.13) we conclude that ˇ D 1=kBT ,

� D ˇp ; (2.49)

and

G.T; p;N/ D �kBT ln
N.ˇ; �/ : (2.50)
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As before, the Lagrange multipliers are related to thermodynamic quantities: ˇ is
the inverse temperature parameter and � is the pressure p divided by the thermal
energy kBT.

The average energy and volume are

hEi D �@ ln
N

@̌
; (2.51a)

hVi D �@ ln
N

@�
: (2.51b)

From here one can get the Maxwell relation

@ hEi
@�

D @ hVi
@̌

: (2.52)

Equations (2.51) are complemented by

˛ � �ˇ� D ln
N

N
; (2.53)

which follows from the property � D G=N for one-component systems.
The energy and volume fluctuations are characterized by

˝

E2
˛ � hEi2 D @2 ln
N

@̌ 2
D kBT2CV ; (2.54a)

˝

V2
˛ � hVi2 D @2 ln
N

@�2
D � 1

ˇ

�

@ hVi
@p

�

ˇ;N

D kBThVi�T : (2.54b)

Equations (2.40) and (2.54b) are equivalent. Both show that the density fluctuations
are proportional to the isothermal compressibility and decrease as the size of the
system increases. In (2.40) the volume is constant, so that the density fluctuations
are due to fluctuations in the number of particles, while the opposite happens in
(2.54b).

Again, the cumulants can be obtained as

K .k/
E D .�1/k @

k ln
N

@̌ k
; (2.55a)

K
.k/

V D .�1/k @
k ln
N

@� k
: (2.55b)

The volume probability distribution function is

PN.VIˇ; �/ D
Z

dxN �N.xN/ D e��VZN.ˇ;V/

V0
N.ˇ; �/
: (2.56)
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Table 2.1 Summary of statistical ensembles

Statistical ensembles

Quantity Microcanonical Canonical Grand canonical Isothermal–isobaric

�N.xN /
˘E;EC	E

�

HN.xN/
�

NŠhdN!	E.E;V;N/

e�ˇHN .xN /

NŠhdNZN.ˇ;V/

e�˛N e�ˇHN .xN /

NŠhdN�.ˇ;V; ˛/

e��V e�ˇHN .xN /

V0NŠhdN
N.ˇ; �/

Partition fcn.

Symbol !	E.E;V;N/ ZN.ˇ;V/ �.ˇ;V; ˛/ 
N.ˇ; �/

Expression

Z HN DEC	E

HN DE

dxN

NŠhdN

Z

dxN

NŠhdN
e�ˇHN .xN /

1
X

ND0

e�˛NZN.ˇ;V/

Z 1

0

dV

V0
e��V

�ZN.ˇ;V/

Potential S D kB ln!	E F D �kBT lnZN ˝ D �kBT ln� G D �kBT ln
N

ˇ � 1

kBT

@ ln!	E

@E
X X X

� � ˇp
@ ln!	E

@V

@ lnZN

@V

ln�

V
X

˛ � �ˇ� @ ln!	E

@N

@ lnZN

@N
X ln
N

N

E, hEi X �@ lnZN

@ˇ
�@ ln�

@ˇ
�@ ln
N

@ˇ

N, hNi X X �@ ln�

@˛
X

V, hVi X X X � @

@�
ln
N

The check marks denote the control variables in each ensemble

As expected, PN.V/ has a sharp peak at V D eV , where

� D @ lnZN.ˇ;V/

@V

ˇ

ˇ

ˇ

ˇ

VDeV
: (2.57)

Now, comparison with (2.28a) shows the canonical$isothermal–isobaric ensemble
equivalence in the thermodynamic limit.

A summary of the main relations for the four ensembles considered in this
chapter can be found in Table 2.1.

2.7 Ideal Gas

The exact evaluation of the partition functions (2.9), (2.18), (2.33), and (2.47) is in
general a formidable task due to the involved dependence of the Hamiltonian on the
coordinates of the particles. However, in the case of non-interacting particles (ideal



26 2 Summary of Equilibrium Statistical Ensembles

gas), the Hamiltonian depends only on the momenta:

HN.xN/ ! Hid
N .p

N/ D
N
X

iD1

p2i
2m

; (2.58)

where m is the mass of a particle. In this case the N-body Hamiltonian is just the sum
over all the particles of the one-body Hamiltonian p2i =2m and the exact statistical-
mechanical results can be easily obtained.

The expressions for the partition function, the thermodynamic potential, and the
first derivatives of the latter for each one of the four ensembles considered above are
listed in Table 2.2. In those expressions, � .x/ is the well-known gamma function,

�.ˇ;V/ � V

Œƒ.ˇ/�d
(2.59)

Table 2.2 Physical quantities of an ideal gas

Statistical ensembles

Quantity Microcanonical Canonical Grand canonical Isothermal–isobaric

Partition fcn.

Symbol !id
	E.E;V;N/ Z id

N .ˇ;V/ � id.ˇ;V; ˛/ 
id
N .ˇ; �/

Expression

�

V.2�mE=h2/d=2
�N

NŠ� .dN=2/

	E

E

Œ�.ˇ;V/�N

NŠ
exp Œe�˛�.ˇ;V/�

��.NC1/

V0Œƒ.ˇ/�dN

Potential

Symbol
Sid.E;V;N/

NkB

Fid.T;V;N/

NkBT

˝ id.T;V; �/

kBT

Gid.T; p;N/

NkBT

Expression ln

"

V

N

�

4�mE

dNh2

�d=2
#

ln
N

�.ˇ;V/
� 1 �e�˛�.ˇ;V/ ln

pŒƒ.ˇ/�d

kBT

C d C 2

2

T
2

d

E

NkB
X X X

pid 2

d

E

V

N

V
kBT kBTe�˛ �.ˇ;V/

V
X

�id � 2
d

E

N
ln

"

V

N

�

4�mE

dNh2

�d=2
#

kBT ln
N

�.ˇ;V/
X kBT ln

pŒƒ.ˇ/�d

kBT

E, hEiid X d

2
NkBT

d

2
kBTe�˛�.ˇ;V/

d

2
NkBT

N, hNi X X e�˛�.ˇ;V/ X

V, hVi X X X NkBT

p

The check marks denote the control variables in each ensemble
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is the one-particle partition function and

ƒ.ˇ/ � h
p

2�m=ˇ
(2.60)

is the thermal de Broglie wavelength. When obtaining the thermodynamic potentials
from the logarithm of the corresponding partition function, the thermodynamic limit
(N ! 1) has been taken. This allows us to use the Stirling approximation ln NŠ �
N.ln N � 1/ and the limit N�1 ln.	E=E/ ! 0.

Note that the expressions for the thermodynamic potentials and the thermody-
namic variables (temperature, pressure, chemical potential, internal energy, number
of particles, and volume) in a given ensemble are fully equivalent to those in
any other ensemble. This a manifestation of the ensemble equivalence in the
thermodynamic limit, the only difference lying in the choice of independent and
dependent variables.

2.8 Interacting Systems

Of course, particles do interact in real systems, so the Hamiltonian has the generic
form

HN.xN/ D Hid
N .p

N/C˚N.rN/ ; (2.61)

where ˚N denotes the total potential energy. Since the interactions among the
particles depend on the relative positions of the particles only, the potential energy
function is invariant under translations, i.e.,

˚N.r1 C a; r2 C a; : : : ; rN C a/ D ˚N.r1; r2; : : : ; rN/; (2.62)

for any arbitrary displacement vector a.
As a consequence of the decomposition (2.61), the canonical partition function

factorizes into its ideal and non-ideal parts:

ZN.ˇ;V/ D Z id
N .ˇ;V/QN.ˇ;V/ ; (2.63)

where Z id
N can be found in Table 2.2 and the non-ideal part

QN.ˇ;V/ D V�N
Z

drN e�ˇ˚N .rN/ (2.64)

is the configuration integral. We will refer to the exponential expŒ�ˇ˚N.rN/� in the
integrand of QN as the Boltzmann factor.
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In the canonical ensemble, QN is responsible for the excess contributions Fex D
F � Fid; hEiex D hEi � hEiid, pex D p � pid; �ex D � � �id:

Fex.T;V;N/ D �kBT lnQN.ˇ;V/ ; (2.65a)

hEiex D �@ lnQN

@̌
; (2.65b)

pex D kBT
@ lnQN

@V
; (2.65c)

�ex D �kBT
@ lnQN

@N
: (2.65d)

In general, if A.rN/ is a dynamical variable that depends on the particle positions
only, its canonical-ensemble average is

hAi D V�N

QN.ˇ;V/

Z

drN A.rN/e�ˇ˚N .rN / : (2.66)

The grand partition function does not factorize but can be written as

�.ˇ;V; ˛/ D 1C
1
X

ND1

VNQN.ˇ;V/

NŠ
ŒOz.ˇ; ˛/�N ; (2.67)

where we have taken into account that Q0 D 1 and have introduced the quantity

Oz.ˇ; ˛/ � z.˛/

Œƒ.ˇ/�d
; (2.68)

z being the fugacity defined by (2.15). Thus, Oz is a rescaled fugacity with dimensions
of a number density. According to (2.67), we observe that the configuration integrals
QN are directly related to the coefficients in the expansion of the grand partition
function in powers of the quantity Oz.

As for the isothermal–isobaric partition function, it is easy to obtain


N.ˇ; �/ D 1

V0NŠ Œƒ.ˇ/�
dN

Z 1

0

dV e��VVNQN.ˇ;V/ : (2.69)

This shows that 
N can be seen as proportional to the Laplace transform of VNQN

with respect to volume.
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2.9 Generalization to Mixtures

While so far we have restricted ourselves to one-component systems, most of the
arguments and derivations can be easily generalized to mixtures. In particular, (2.8),
(2.9), (2.17), (2.18), (2.31), (2.32), (2.45), and (2.46) generalize to

�fN�g.xN/ D ˘E;EC	E
�

HfN�g.xN/
�

.
Q

� N�Š/hdN!	E.E;V; fN�g/ ; (2.70a)

!	E.E;V; fN�g/ D 1

.
Q

� N�Š/hdN

Z

E�HfN�g.xN /�EC	E
dxN ; (2.70b)

�fN�g.xN/ D e�ˇHfN� g.xN /

.
Q

� N�Š/hdNZfN�g.ˇ;V/
; (2.71a)

ZfN�g.ˇ;V/ D 1

.
Q

� N�Š/hdN

Z

dxN e�ˇHfN� g.xN / ; (2.71b)

�fN�g.xN/ D
Q

� e�˛�N�e�ˇHfN� g.xN /

.
Q

� N�Š/hdN�.ˇ;V; f˛�g/ ; (2.72a)

�.ˇ;V; f˛�g/ D
1
X

N1D0

1
X

N2D0
� � �

Q

� e�˛�N�

.
Q

� N�Š/hdN

Z

dxN e�ˇHfN� g.xN / ; (2.72b)

�fN�g.xN/ D e��V e�ˇHfN� g.xN /

V0.
Q

� N�Š/hdN
fN�g.ˇ; �/
; (2.73a)


fN�g.ˇ; �/ D 1

V0.
Q

� N�Š/hdN

Z 1

0

dV e��V
Z

dxN e�ˇHfN� g.xN / ; (2.73b)

respectively. For instance, from (2.72) it is easy to check that, in the grand canonical
ensemble, one has

hN�i D �@ ln�

@˛�
; (2.74a)

hN�1N�2i � hN�1i hN�2i D @2 ln�

@˛�2@˛�1
D �@ hN�1i

@˛�2
: (2.74b)

Equation (2.74b) is a generalization of (2.39b).
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Table 2.2 can be generalized to ideal-gas mixtures. In particular,


id
fN�g.ˇ; �/ D ��.NC1/NŠ

V0
Q

� N� Š Œƒ�.ˇ/�
dN�

; (2.75a)

Gid.T; p; fN�g/ D kBT
X

�

N� ln
x�p Œƒ�.ˇ/�

d

kBT
; (2.75b)

�id
� .T; p; x�/ D kBT ln

x�p Œƒ�.ˇ/�
d

kBT
; (2.75c)

where ƒ�.ˇ/ is the thermal de Broglie wavelength of species �, which is given by
(2.60) with the replacement m ! m� , where m� is the mass of a particle of species �.

Exercises

2.1 Use the Lagrange multiplier method to maximize the entropy functional (2.3)
with the constraint (2.7) and prove the microcanonical distribution (2.8). Derive
(2.12).

2.2 Use the Lagrange multiplier method to maximize the entropy functional (2.3)
with the constraints (2.16) and prove the canonical distribution (2.17). Derive (2.20).

2.3 Derive (2.23).

2.4 Check (2.25) for 3 � k � 6.

2.5 Use the Lagrange multiplier method to maximize the entropy functional (2.5)
with the constraints (2.29) and prove the grand canonical distribution (2.31). Derive
(2.34).

2.6 How should the derivative in (2.36a) be interpreted, at constant ˛ D �ˇ� or at
constant �? Are both interpretations equivalent?

2.7 Derive (2.38b).

2.8 Use the Lagrange multiplier method to maximize the entropy functional (2.6)
with the constraints (2.44) and prove the isothermal–isobaric distribution (2.45).
Derive (2.48).

2.9 Derive (2.51b).

2.10 How should the derivative in (2.51a) be interpreted, at constant � D ˇp or at
constant p? Are both interpretations equivalent?
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2.11 Prove that the area and the volume of a hypersphere of radius R in k
dimensions are

2�k=2

� .k=2/
Rk�1 ;

�k=2

� .k=2C 1/
Rk; (2.76)

respectively. Hint: Evaluate the multiple Gaussian integral
R

drk e�r2 in both
Cartesian and spherical coordinates.

2.12 Making use of (2.76), prove that the microcanonical partition function for an
ideal gas, !id

	E, is indeed given by the expression shown in Table 2.2.

2.13 Prove (2.59).

2.14 Check the expressions of Table 2.2.

2.15 Using Table 2.2, prove that for an ideal gas the energy, number, and volume
probability distribution functions (2.26), (2.42), and (2.56) reduce to

P id
N .E/ D ˇ

e�ˇE.ˇE/dN=2�1

� .dN=2/
; (2.77a)

P id.N/ D e�hNi hNiN

NŠ
; (2.77b)

P id
N .V/ D ˇp

e�ˇpV .ˇpV/N

NŠ
; (2.77c)

respectively.

2.16 Define the scaled quantities E� D E= hEi D 2ˇE=dN, N� D N= hNi,
V� D V= hVi D ˇpV=N and obtain the corresponding distributions P id

N .E
�/ D

hEiP id
N .E/, P

id.N�/ D hNiP id.N/, and P id
N .V

�/ D hViP id
N .V/ from (2.77).

Explore the shape of those functions as N (or hNi) increases.

2.17 Justify (2.70)–(2.73).
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Chapter 3
Density Expansion of the Equation of State

This chapter is mainly devoted to the formal derivation of the virial coefficients
characterizing the representation of the equation of state as a series expansion
in powers of density. This requires the introduction of diagrammatic techniques,
the main steps being justified by simple examples without rigorous proofs. The
chapter continues with the analysis of the second virial coefficient for simple
model interactions and of higher-order virial coefficients for hard spheres, both one-
component and multicomponent. Finally, some simple approximate equations of
state for one-component and multicomponent hard-sphere liquids are described.

3.1 Pair Interaction Potential and Mayer Function

The formal results of Chap. 2 apply regardless of the specific form of the potential
energy function ˚N.rN/. From now on, however, we assume that the interactions
are pairwise additive, i.e., ˚N can be expressed as a sum over all pairs of a certain
function (interaction potential) � that depends on the distance between the two
particles of the pair. In mathematical terms,

˚N.rN/ D
N�1
X

iD1

N
X

jDiC1
�.rij/ D 1

2

X

i¤j

�.rij/ ; rij � jri � rjj : (3.1)

The pairwise additivity condition (3.1) allows us to write the global Boltzmann
factor as a product of N.N � 1/=2 pair Boltzmann factors,

e�ˇ˚N .rN/ D
N�1
Y

iD1

N
Y

jDiC1
e�ˇ�.rij/ : (3.2)
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Since the pair Boltzmann factor e�ˇ�.r/ is equal to unity in the ideal-gas case, a
convenient way of measuring deviations from the ideal gas is by means of the
function [1]

f .r/ � e�ˇ�.r/ � 1 : (3.3)

This function is known as the Mayer function, after Joseph E. Mayer (see Fig. 3.1)
and Maria Goeppert Mayer (see Fig. 3.2). For short-range interactions, �.r/ is small
if r is sufficiently large. In that region f .r/ � �ˇ�.r/, so the Mayer function has
the same range as the potential.

A few examples of effective pair interaction potentials are shown in Table 3.1.
The selection of those examples is not arbitrary. They represent prototypical short-
range potentials characterizing the basic and most relevant features of particle

Fig. 3.1 Joseph Edward
Mayer (1904–1983)
(Photograph by Bachrach,
http://www.bachrachportraits.
com, reproduced with
permission. The photo can be
seen in https://photos.aip.org/
history-programs/niels-bohr-
library/photos/mayer-joseph-
a2)

Fig. 3.2 Maria
Goeppert-Mayer
(1906–1972)
(Photograph from Wikimedia
Commons, http://commons.
wikimedia.org/wiki/File:
Mayer.jpg)

http://www.bachrachportraits.com
http://www.bachrachportraits.com
https://photos.aip.org/history-programs/niels-bohr-library/photos/mayer-joseph-a2
https://photos.aip.org/history-programs/niels-bohr-library/photos/mayer-joseph-a2
https://photos.aip.org/history-programs/niels-bohr-library/photos/mayer-joseph-a2
https://photos.aip.org/history-programs/niels-bohr-library/photos/mayer-joseph-a2
http://commons.wikimedia.org/wiki/File:Mayer.jpg
http://commons.wikimedia.org/wiki/File:Mayer.jpg
http://commons.wikimedia.org/wiki/File:Mayer.jpg
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interactions in a great deal of real fluids (both molecular and colloidal). Moreover,
their mathematical forms are simple enough as to allow for an analytical (or semi-
analytical) exact or approximate treatment to the thermodynamic and structural
properties of the corresponding systems, thus helping us to grasp a better physical
interpretation of the statistical-mechanical behavior of real fluids. In fact, most of
the specific applications considered in this book refer to potentials in Table 3.1.
They are succinctly described below.

• The simplest potential is the hard-sphere (HS) one, which represents impenetra-
ble spherical particles of diameter � . In spite of its crudeness, this interaction
model not only represents a favorite playground in statistical mechanics, both
in and out of equilibrium [2], but is also important from a more practical point
of view. In real fluids, especially at high temperatures and moderate and high
densities, the structural and thermodynamic properties are mainly governed by
the repulsive forces among molecules and in this context hard-core fluids are
very useful as reference systems [3–5]. Moreover, the use of the HS model in
the realm of soft condensed matter [6] has become increasingly popular [7]. For
instance, the effective interaction among (sterically stabilized) colloidal particles
can be tuned to match almost perfectly the HS model [8].

• When the repulsive barrier is constant but finite, the resulting potential is that
of penetrable spheres (PS). Now the pair potential �.r/ takes a finite value "
if the two spheres are overlapped (r < �) and 0 otherwise. The PS model
[7, 9–18], together with the Gaussian-core model [7, 15, 19], is a prototypical
example of a bounded potential, i.e., a potential such that j�.r/j < "max D finite.
The PS model has been proposed to understand the peculiar behavior of some
colloidal systems, such as micelles in a solvent or star copolymer suspensions.
The particles in these colloids are constituted by a small core surrounded by
several attached polymeric arms. As a consequence of their structure, two or more
of these particles allow a considerable degree of overlapping with a small energy
cost [7]. An ultrasoft logarithmically divergent potential for short distances has
also been proposed to describe the effective interaction between star polymers in
good solvents [20].

• Going back to unbounded potentials, the square-shoulder (SS) one [21] is the
simplest example of a core-softened potential, i.e., an interaction function with
a two-length scale repulsive part exhibiting a softening region where the slope
changes dramatically [22].

• The most widely used potential mimicking the effective central interaction
between two molecules was proposed by John E. Lennard-Jones (Fig. 3.3) in
1924. The Lennard-Jones (LJ) potential has an attractive van der Waals tail
r�6 and is attractive for distances larger than a certain equilibrium separation
(r0 D 21=6�). For shorter distances, it becomes increasingly repulsive.

• A piecewise-constant caricature of realistic continuous potentials (like the LJ
one) is provided by the square-well (SW) potential. It contains two length scales
(� and � 0) and an energy scale ("). In particular, the choice � 0=� D 1:5 is
typically adopted to represent atomistic interactions.
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Fig. 3.3 John Edward
Lennard-Jones (1894–1954)
(Photograph reproduced with
permission from Computer
Laboratory, University of
Cambridge, Copyright 1999,
http://www.cl.cam.ac.uk/
relics/jpegs/jones.jpg)

Fig. 3.4 Rodney James
Baxter (b. 1940) (Photograph
reproduced with permission
from Belinda Pratten,
Copyright 2013, http://www.
belindamorganpratten.com)

• In 1968, Rodney J. Baxter (Fig. 3.4) proposed to take the synchronized limit of
an infinitely narrow (� 0 ! �) and infinitely deep (" ! 1) SW potential. A non-
trivial result, usually referred to as sticky hard spheres (SHS), is obtained when
both limits are coupled in such a way that [23]

��1 � 2d�1
"

�

� 0

�

�d

� 1
#

�

eˇ" � 1� D finite ; (3.4)

where the temperature-dependent parameter ��1 measures the “stickiness” of the
interaction. In the SHS limit the Mayer function becomes

fSHS.r/ D ��.� � r/C ��1

d2d�1 �ı.r � �/ ; (3.5)

where the Heaviside step function is �.x � a/ D 1 if x � a and 0 otherwise.
Strictly speaking, a one-component SHS system is not thermodynamically stable,
but a small degree of polydispersity is sufficient to restore stability [24, 25].
While the SHS model was originally introduced as a rather academic potential, it
has proved to provide an excellent starting point for the study of colloidal systems

http://www.cl.cam.ac.uk/relics/jpegs/jones.jpg
http://www.cl.cam.ac.uk/relics/jpegs/jones.jpg
http://www.belindamorganpratten.com
http://www.belindamorganpratten.com


3.2 Virial Expansion 39

with short-range attraction [26–30], interactions between protein molecules in
solution [31], and other interesting applications [32, 33].

Of course, the pairwise additivity hypothesis (3.1) can be extended to mixtures.
In that case, instead of a single potential function �.r/, there exists in general
a different function �˛� .r/ for each pair of species ˛ and � . As an obvious
consequence, there is a Mayer function

f˛� .r/ D e�ˇ�˛� .r/ � 1 (3.6)

for each pair of species ˛ and � .
In particular, in the case of a HS multicomponent system,

�˛� .r/ D
(

1 ; r < �˛� ;

0 ; r > �˛� ;
(3.7a)

f˛� .r/ D ��.�˛� � r/ : (3.7b)

Here, �˛� is the closest possible distance between the center of a sphere of species
˛ and the center of a sphere of species � . If we call �˛ D �˛˛ to the closest distance
between two spheres of the same species ˛, it is legitimate to refer to �˛ as the
diameter of a sphere of species ˛. However, that does not necessarily mean that two
spheres of different type repel each other with a distance equal to the sum of their
radii. Depending on that, one can classify HS mixtures into additive or nonadditive:

• Additive HS (AHS) mixtures: �˛� D 1
2
.�˛ C ��/ for all pairs ˛� .

• Nonadditive HS (NAHS) mixtures: �˛� ¤ 1
2
.�˛ C �� / for at least one

pair ˛� .

Furthermore, the nonadditivity is said to be negative if �˛� < 1
2
.�˛ C �� /, while

it is positive if �˛� > 1
2
.�˛ C �� /.

3.2 Virial Expansion

Except for one-dimensional systems with nearest-neighbor interactions (see
Chap. 5), the exact evaluation by theoretical tools of the equation of state (EoS)
expressing the pressure p.n;T/ for arbitrary interaction potential �.r/, density n,
and temperature T is simply not possible. At a formal level, the non-ideal EoS
is given by (2.65c) in the canonical ensemble, but the evaluation of the dN-order
configuration integral QN defined in (2.64) is beyond our capabilities.
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However, the problem can be controlled if one gives up the “arbitrary density”
requirement and is satisfied with the low-density regime. In such a case, a series
expansion in powers of density (virial expansion) is the adequate tool:

Z � p

nkBT
D 1C B2.T/n C B3.T/n

2 C � � �

D 1C
1
X

kD2
Bknk�1 ; (3.8)

where Z is the compressibility factor [see (1.35)] and Bk.T/ are the virial coeffi-
cients. Our main aim in this chapter is to derive expressions for the coefficients
Bk.T/ as functions of T for any (short-range) interaction potential �.r/.

The expansion (3.8) was originally introduced by Thiesen [34] as early as in
1885 as an approximation to the EoS of low-density fluids. It was apparently
independently reintroduced in 1901 by Kamerlingh Onnes (see Fig. 3.5) as a
mathematical representation of experimental data on the EoS [35].

What is the basic physical idea behind the virial expansion? This is very clearly
stated by E.G.D. Cohen (see Fig. 3.6) [36]:

The virial or density expansions reduce the intractable N.�1023/-particle problem
of a macroscopic gas in a volume V to a sum of an increasing number of tractable
isolated few (1, 2, 3, . . . ) particle problems, where each group of particles moves
alone in the volume V of the system.

Density expansions will then appear, since the number of single particles, pairs
of particles, triplets of particles, . . . , in the system are proportional to n, n2 , n3, . . . ,
respectively, where n D N=V is the number density of the particles.

Fig. 3.5 Heike Kamerlingh
Onnes (1853–1926)
(Photograph from Wikimedia
Commons, https://upload.
wikimedia.org/wikipedia/
commons/f/fa/
Kamerlingh_Onnes.jpg)

https://upload.wikimedia.org/wikipedia/commons/f/fa/Kamerlingh_Onnes.jpg
https://upload.wikimedia.org/wikipedia/commons/f/fa/Kamerlingh_Onnes.jpg
https://upload.wikimedia.org/wikipedia/commons/f/fa/Kamerlingh_Onnes.jpg
https://upload.wikimedia.org/wikipedia/commons/f/fa/Kamerlingh_Onnes.jpg
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Fig. 3.6 Ezechiel “Eddie”
Godert David Cohen
(b. 1923)
(Photograph courtesy of
E.G.D. Cohen)

In order to attain (3.8), and exploiting the equivalence among the statistical
ensembles in the thermodynamic limit, it is convenient to work with the grand
canonical ensemble. This is because in that ensemble we already have a natural
series power expansion for free: as shown in (2.67), the grand partition function �
is already expressed as a series in powers of fugacity.

Let us consider a generic quantity X that can be obtained from � by taking its
logarithm, by differentiation, etc. Then, from the expansion in (2.67) one could in
principle obtain

X D
1
X

`D0
NX`Oz` ; (3.9)

where the coefficients NX` are related to the configuration integrals QN and depend
on the specific choice of X. In particular, in the case of the average number density
n D hNi =V , we can write

n D
1
X

`D1
`b`Oz` ; (3.10)

where, because of reasons that will become apparent later, the coefficients b` are
termed cluster integrals.

Now, eliminating the (rescaled) fugacity Oz between (3.9) and (3.10) one can
express X in powers of n:

X D
1
X

kD0
Xknk : (3.11)
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The first few relations are

X0 D NX0 ; (3.12a)

X1 D
NX1
b1
; (3.12b)

X2 D NX2
b21

� 2b2

b31

NX1 ; (3.12c)

X3 D
NX3
b31

� 4b2

b41

NX2 �
�

3b3

b41
� 8b22

b51

�

NX1 : (3.12d)

X4 D NX4
b41

� 6b2

b51
NX3 � 2

�

3b3

b51
� 10b22

b61

�

NX2 � 2
�

2b4

b51
C 20b32

b71
� 15b2b3

b61

�

NX1 :

(3.12e)

3.3 Diagrammatic Method

Let us consider a one-component system and rewrite (2.67) as

� D 1C
1
X

ND1

OzN

NŠ

Z

drN WN.1; 2; : : : ;N/ ; (3.13)

where we have introduced the N-body function

WN.1; 2; : : : ;N/ � WN.rN/ D e�ˇ˚N .rN /

D
Y

1�i<j�N

.1C fij/ ; fij � f .rij/ ; (3.14)

and use has been made of (2.64) and of the pairwise additivity property (3.1). The
notation fij � f .rij/ should not be confused with the notation f˛� .r/ introduced for
mixtures in (3.6).

When expanding the product in (3.14), 2N.N�1/=2 terms appear in WN . To manage
those terms, it is very convenient to represent them with diagrams. Each diagram
contributing to WN is made of N open circles (representing the N particles), some of
them being joined by a bond (representing a factor fij). For example, the diagrams
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contributing to W1–W4 are

(3.15a)

(3.15b)

(3.15c)

(3.15d)

The numerical coefficients enclosed by curly braces (e.g., f3g) in front of some
diagrams refer to the number of diagrams topologically equivalent, i.e., those that
differ only in the particle labels associated with each circle. For instance,

(3.16)

Some of the diagrams are disconnected (i.e., there exists at least one particle
isolated from the remaining ones), while the other ones are connected diagrams or
clusters (i.e., it is possible to go from any particle to any other particle by following
a path made of bonds) [1]. Therefore, in general,

WN.1; 2; : : : ;N/ D
X

all (connected and disconnected) diagrams of N particles:

As will be seen, in our goal of obtaining the coefficients in the expansion (3.8),
we will follow a distillation process upon which we will get rid of the least relevant
diagrams at each stage, keeping only those containing more information. The first
step consists in taking the logarithm of the grand partition function:

ln� D
1
X

`D1

Oz`
`Š

Z

dr` U`.1; 2; : : : ; `/ ; (3.17)
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where the functions U`.1; 2; : : : ; `/ are called cluster (or Ursell) functions. They are
obviously related to the functions WN.1; 2; : : : ;N/. In fact, by comparing (3.13) and
(3.17), one realizes that the relationship between fWNg and fU`g is exactly the same
as that between moments and cumulants of a certain probability distribution [37]. In
that analogy,� plays the role of the characteristic function (or Fourier transform of
the probability distribution) and �iOz plays the role of the Fourier variable. The first
few relations are

W1.1/ D U1.1/ ; (3.18a)

W2.1; 2/ D U1.1/U1.2/C U2.1; 2/ ; (3.18b)

W3.1; 2; 3/ D U1.1/U1.2/U1.3/C f3gU1.1/U2.2; 3/C U3.1; 2; 3/ ; (3.18c)

W4.1; 2; 3; 4/ D U1.1/U1.2/U1.3/U1.4/C f6gU1.1/U1.2/U2.3; 4/

Cf3gU2.1; 2/U2.3; 4/C f4gU1.1/U3.2; 3; 4/C U4.1; 2; 3; 4/ :

(3.18d)

Again, each numerical factor represents the number of terms equivalent (except for
particle labeling) to the indicated canonical term. Using (3.15), one finds

(3.19a)

(3.19b)

(3.19c)

(3.19d)

We observe that all the disconnected diagrams have gone away. In general,

U`.1; 2; : : : ; `/ D
X

all connected diagrams (i.e., “clusters”) of ` particles:

For later use, it is important to classify the clusters into reducible (or singly
connected) and irreducible (or biconnected). The first class is made of those clusters
having at least one articulation point, i.e., a point that, if removed together with
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its bonds, the resulting diagram becomes disconnected. Examples of reducible
clusters are

(3.20)

where the articulation points are surrounded by circles. Irreducible clusters (also
called stars) are those clusters with no articulation point. For instance,

(3.21)

The functions WN.rN/ and U`.r`/ depend on the position vectors of the cor-
responding number of particles. This is indicated by open circles in the diagrams
(3.15) and (3.19). We will refer to them as root points. On the other hand, in
(3.13) and (3.17) one has to integrate out the positions of the particles. The quantity
obtained by integrating a given diagram will be represented by the same diagram,
except that the integrated points will be indicated by filled circles and will be
referred to as field points. For instance,

(3.22a)

(3.22b)

(3.22c)

If A.1; 2; : : : ; `/ is an arbitrary translation-invariant function, then it actually
depends on the relative positions of the ` particles only, i.e.,

A.r1; r2; : : : ; r`/ D NA.r21; : : : ; r`1/ : (3.23)

Thanks to this property,

Z

dr1

Z

dr2 � � �
Z

dr` A.r1; r2; : : : ; r`/ D V
Z

dr21 � � �
Z

dr`1 NA.r21; : : : ; r`1/

D V
Z

dr2 � � �
Z

dr` A.r1; r2; : : : ; r`/ :

(3.24)
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As a consequence, every zero-root diagram factorizes into V times the correspond-
ing one-root diagram. Thus, for instance,

(3.25a)

(3.25b)

(3.25c)

A further factorization property applies to the reducible diagrams. The existence
of at least one articulation point allows one to express the zero-root reducible
diagrams as products of zero-root stars. In particular, in the case of the reducible
diagrams (3.20) one has

(3.26a)

(3.26b)

(3.26c)

(3.26d)

3.4 Grand Canonical Ensemble: Expansion in Powers
of Fugacity

Let us rewrite (3.17) as

ln� D V
1
X

`D1
b`Oz` ; (3.27)

where the cluster integrals are defined as

b` � V�1

`Š

Z

dr` U`.1; 2; : : : ; `/ : (3.28)

Taking into account (3.19), the first few cluster integrals are
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(3.29a)

(3.29b)

(3.29c)

(3.29d)

Now the numerical coefficients in front of each zero-root diagram do not need to be
enclosed between braces because all the topologically equivalent “bare” diagrams
become the same upon integration. We will refer to the numerical coefficient in front
of a given diagram as the degeneracy of that diagram.

In general,

b`.T/ D V�1

`Š

X

all clusters with zero roots and ` field points

D 1

`Š

X

all clusters with 1 root and ` � 1 field points . (3.30)

From the grand canonical relations (2.36b) and (2.37) we have

ˇp D
1
X

`D1
b`Oz` ; (3.31a)

n D � 1
V

@ ln�

@˛
D Oz

V

@ ln�

@Oz D
1
X

`D1
`b`Oz` ; (3.31b)

where we have taken into account that @Oz=@˛ D �Oz, as follows from the definitions
(2.15) and (2.68). Equations (3.31) express the pressure and the number density
as series expansions in powers of fugacity. Note that the last term in (3.31b) was
already written in (3.10).
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3.5 Expansion of Pressure in Powers of Density: Virial
Coefficients

Equations (3.8) and (3.31a) have the same structure as (3.11) and (3.9), respectively,
with X ! ˇp, Xk ! Bk, and NX` ! b`. Therefore, the general relations (3.12) yield

B1 D 1 ; (3.32a)

B2 D �b2 ; (3.32b)

B3 D 4b22 � 2b3 ; (3.32c)

B4 D �20b32 C 18b2b3 � 3b4 ; (3.32d)

where (3.29a) has been used. The diagrams representing the virial coefficients Bk

can be obtained from those representing the cluster integrals b`. Apparently, given
the nonlinear relationship between both classes of coefficients, one could expect
that the diagram complexity increases in the process fb`g ! fBkg. However, what
actually happens is just the opposite. It turns out that, thanks to the factorization
property of the reducible diagrams present in the cluster integrals, they exactly
cancel out the nonlinear terms. As a consequence, only the irreducible diagrams
(stars) survive in the virial coefficients. For instance, inserting (3.29) into (3.32),
and making use of (3.26), one finds

(3.33a)

(3.33b)

(3.33c)
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The star diagrams contributing to the virial coefficients B2–B5 are displayed in
Table 3.2 [38]. In general,

Bk.T/ D �k � 1
kŠ

V�1X all stars with zero roots and k field points

D �k � 1
kŠ

X

all stars with 1 root and k � 1 field points . (3.34)

The “distillation” process leading to (3.8) is summarized in Table 3.3 and
Fig. 3.7. As shown in Fig. 3.8, the number of independent diagrams needed to
evaluate the kth virial coefficient Bk grows explosively with k, what significantly
hampers the computation beyond the first few coefficients, even with sophisticated
numerical algorithms [39, 41, 42].

Table 3.2 Diagrams contributing to B2.r/, B3.r/, B4.r/, and B5.r/ in the expansion (3.8)

Density term Coefficient Diagrams

� n

2
�2B2

� n2

3

�3B3

� n3

8

�8B4

� n4

30
�30B5

Table 3.3 Summary of diagrams contributing to different quantities

Quantity Expansion in powers of Coefficient Diagrams Equation

� Fugacity (Oz) WN=NŠ All (disconnectedCclusters) (3.13)

ln� Fugacity (Oz) U`=`Š Clusters (reducibleCstars) (3.17)

p Fugacity (Oz) b` Clusters (reducibleCstars) (3.31a)

n Fugacity (Oz) `b` Clusters (reducibleCstars) (3.31b)

p Density (n) Bk Stars (3.8)
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Fig. 3.7 Schematic
representation of the
diagrams contributing to
different quantities

Fig. 3.8 Number of star
diagrams (in logarithmic
scale) contributing to each
virial coefficient Bk [39, 40].
The unlabeled and labeled
cases correspond to
monodisperse and
polydisperse systems,
respectively

3.6 Virial Coefficients for Mixtures

Although the steps followed so far in this chapter have been restricted to one-
component systems, it is not difficult to extend the final results to mixtures. In
that case, the virial coefficients not only depend on temperature but also on the
set of mole fractions fx�g, i.e., Bk.T/ ! Bk.T; fx�g/. The dependence of Bk on
fx�g is necessarily polynomial (of degree k), so that one can define composition-
independent virial coefficients bB�1�2����k.T/ as the coefficients in the polynomial
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expansion of Bk.T; fx�g/, namely

Bk.T; fx�g/ D
X

�1

X

�2

� � �
X

�k

x�1x�2 � � � x�k
bB�1�2����k.T/ ; (3.35)

where the indices �1; �2; : : : ; �k run over all the species of the mixture. For instance,
the second (bB˛� ), third (bB˛�ı), and fourth (bB˛�ı%) composition-independent virial
coefficients are defined by

B2.T/ D
X

˛;�

x˛x�bB˛� .T/ ; (3.36a)

B3.T/ D
X

˛;�;ı

x˛x�xıbB˛�ı.T/ ; (3.36b)

B4.T/ D
X

˛;�;ı;%

x˛x�xıx%bB˛�ı%.T/ : (3.36c)

Without loss of generality, one can always construct the coefficients bB�1�2����k as
invariant under any permutation of indices, i.e.,bB�1�2����k DbB�2�1����k , etc.

Each coefficient bB�1�2����k is represented by the same diagrams as the one-
component virial coefficient Bk, except that now the k field points represent particles
of species �1; �2; : : : ; �k and, consequently, the degeneracy of each diagram is
broken down (see Fig. 3.8). In particular, (3.33) now becomes

(3.37a)

(3.37b)

bB˛�ı% DbB.I/˛�ı% CbB.I/˛�%ı CbB.I/˛ı%� CbB.II/˛�ı% CbB.II/˛�%ı CbB.II/˛ı%�

CbB.II/�˛%ı CbB.II/�˛ı% CbB.II/ı˛�% CbB.III/˛�ı% ; (3.37c)

where

(3.38a)

(3.38b)

(3.38c)
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Note that, in contrast to bB˛�ı% and bB.III/˛�ı% , the partial contributionsbB.I/˛�ı% and bB.II/˛�ı%
are, in general, not invariant under a permutation of indices.

The simplest type of mixture is the binary one, i.e., only two components (say 1
and 2) are present. In that case,

bB�1�2����k !bB11 � � �1
„ƒ‚…

k1

22 � � �2
„ƒ‚…

k�k1

�bBk1Ik�k1 (3.39)

and thus (3.35) reduces to

Bk.T; x1/ D
k
X

k1D0

 

k

k1

!

xk1
1 xk�k1

2
bBk1Ik�k1 .T/ ; (3.40)

with x2 D 1 � x1. For example, the fourth and fifth virial coefficients are

B4 D x41bB4I0 C 4x31x2bB3I1 C 6x21x
2
2
bB2I2 C 4x1x

3
2
bB1I3 C x42bB0I4 ; (3.41a)

B5 D x51bB5I0 C 5x41x2bB4I1 C 10x31x
2
2
bB3I2 C 10x21x

3
2
bB2I3 C 5x1x

4
2
bB1I4 C x52bB0I5 :

(3.41b)

The coefficients bB4I0, bB0I4, bB5I0, and bB0I5 are equivalent to those of the one-
component system (see Table 3.2). The diagrams associated with bB3I1 and bB2I2 are
shown in Table 3.4, while those associated withbB4I1 andbB3I2 are shown in Table 3.5.
The remaining coefficients (bB1I3, bB2I3, and bB1I4) can be obtained by exchanging
species 1 and 2.

In the special case of a binary AHS mixture made of particles of diameters �1 and
�2, so that �12 D 1

2
.�1C�2/, it is convenient to introduce the rescaled composition-

independent virial coefficients bk1Ik�k1 by the relation

bBAHS
k1Ik�k1 .�1; �2/ D �

vd�
d
1

�k�1
bk1Ik�k1 .�2=�1/ ; (3.42)

Table 3.4 Diagrams contributing to �8VbBk1Ik2 with k1 C k2 D 4

.k1I k2/ Diagrams

.3I 1/

.2I 2/

Filled circles and points enclosed by open circles denote species 1 and 2, respectively
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Table 3.5 Diagrams contributing to �30VbBk1Ik2 with k1 C k2 D 5

.k1I k2/ Diagrams

.4I 1/

.3I 2/

Filled circles and points enclosed by open circles denote species 1 and 2, respectively

where

vd D .�=4/d=2

� .1C d=2/
(3.43)

is the volume of a d-dimensional sphere of unit diameter [see (2.76)]. For instance,
vd D 1, �

4
, �
6

, �2

32
, and �2

60
for d D 1, 2, 3, 4, and 5, respectively. Obviously,

bBAHS
k1Ik�k1

.�1; �2/ DbBAHS
k�k1Ik1 .�2; �1/, what implies the symmetry property

bk1Ik�k1 .q/ D qd.k�1/bk�k1Ik1 .1=q/ : (3.44)
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If the two species have the same diameter (�1 D �2 D �) one recovers the one-
component case and therefore

lim
q!1

bk1Ik�k1 .q/ D bk ; (3.45)

where

bk � �

vd�
d
��.k�1/

BHS
k (3.46)

are the rescaled virial coefficients of a pure HS fluid. Note also that bkI0 D bk. Other
exact relations are less straightforward [43–46]:

lim
q!0

q�d.k�k1�1/bk1Ik�k1 .q/ D k � k1
k

bk�k1 ; (3.47a)

@bk1Ik�k1

@q

ˇ

ˇ

ˇ

ˇ

qD1
D d

.k � k1/.k � 1/

k
bk ; (3.47b)

@bk�1I1
@q

ˇ

ˇ

ˇ

ˇ

qD0
D d

k � 1
k

: (3.47c)

3.7 Second Virial Coefficient

The second virial coefficient provides the very first correction to the ideal gas EoS.
From (3.33a),

B2.T/ D �1
2

Z

dr f .r/ D �d2d�1vd

Z 1

0

dr rd�1f .r/ ; (3.48)

where in the second step we have used spherical coordinates.
In the case of the HS potential, the second virial coefficient is simply

BHS
2 D 2d�1vd�

d ; (3.49)

so that b2 D 2d�1 and the EoS truncated after B2 is

Z � ˇp

n
D 1C 2d�1�C � � � ; (3.50)

where

� � nvd�
d (3.51)

is the packing fraction.
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The HS Mayer function is independent of temperature and so are all the HS virial
coefficients. In general, however, B2.T/ is a function of temperature. As simple
examples, the result for the purely repulsive PS and SS potentials (see Table 3.1
for definitions) are displayed in Table 3.6. The temperature dependence of BPS

2 and
BSS
2 is illustrated by Fig. 3.9. In the zero-temperature limit, both BPS

2 and BSS
2 tend to

HS values corresponding to diameters � and � 0, respectively. In the opposite limit
T ! 1, BSS

2 tends to HS value corresponding to diameter � , while BPS
2 tends to

zero.
As a simple example of the second virial coefficient for a potential with an

attractive part, let us consider the SW interaction (see Table 3.1). The result is simply
obtained from BPS

2 .T/ by the replacement " ! �", as shown in Table 3.6. Table 3.6
also includes BSHS

2 , as obtained from BSW
2 by taking the SHS limit [see (3.4)].

Table 3.6 Expressions for
the second virial coefficient
corresponding to several
interaction potentials, relative
to that of a HS fluid with the
same value of � [see (3.49)]

Potential B2.T/=BHS
2

PS 1� e�1=T�

SS 1C �

.� 0=�/d � 1
�




1� e�1=T�
�

SW 1� �

.� 0=�/d � 1
�




e1=T� � 1
�

SHS 1� 21�d��1

LJ (2s-s) � .1� d=s/

�

8

T�

�d=2s

e1=2T�

Dd=s




�p2=T�

�

Here, T� � kBT=" and, in the SHS case, ��1 is defined by
(3.4)

Fig. 3.9 Second virial
coefficient B2.T/ of PS and
SS fluids, relative to that of a
HS fluid with the same value
of � . In the SS case,
� 0=� D 1:5 and d D 3
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The evaluation is much less straightforward in the case of continuous potentials
like the LJ one. Let us consider the more general case of the LJ (2s-s) potential (with
s > d):

�LJ.r/ D 4"

	


�

r

�2s �

�

r

�s
�

: (3.52)

The minimum is located at r0 D 21=s� . The conventional LJ potential (see Table 3.1)
corresponds to s D 6.

Starting from the last equality in (3.48) and introducing the change of variable
r ! t � p

8ˇ".�=r/s, one obtains

BLJ
2 .T/ D �2d�1vd�

d d

s
.8ˇ"/d=2s

Z 1

0

dt t�d=s�1



e�t2=2Cp
2ˇ"t � 1

�

: (3.53)

From the properties of the parabolic cylinder function Da.z/ [47, 48], it is possible
to prove the integral representation

Da.z/ D e�z2=4

� .�a/

Z 1

0

dt t�a�1



e�t2=2�zt � 1
�

; 0 < Re.a/ < 1 : (3.54)

Comparison between (3.53) and (3.54) yields the expression displayed in Table 3.6.
That compact expression seems to have been first published in [49].

Figure 3.10 shows the temperature dependence of B2=BHS
2 for (three-

dimensional) SW and LJ fluids [50]. For low temperatures, the attractive part

Fig. 3.10 Second virial
coefficient B2.T/, relative to
that of a HS fluid with the
same value of � , of SW fluids
with � 0=� D 1:5 (dashed
line) and of LJ (2s-s) fluids
with s D 4, 5, 6 (thick line),
7, 8, and 12, from bottom to
top (solid lines). The
dimensionality is d D 3



3.7 Second Virial Coefficient 57

of the potential dominates and thus B2 < 0, meaning that in the low-density regime
the pressure is smaller than that of an ideal gas at the same density. Reciprocally,
B2 > 0 for high temperatures, in which case the repulsive part of the potential
prevails. The transition between both situations takes place at the so-called Boyle
temperature TB, where B2 D 0. In the LJ case the Boyle temperature is T�

B D 2=z20,
where z D �z0 is the zero of Dd=s.z/, for which good approximations are known
[47, 48].

Note that, while BSW
2 monotonically grows with temperature and asymptotically

tends to the HS value, the LJ coefficient reaches a maximum (smaller than the HS
value corresponding to a diameter �) and then decreases very slowly. This reflects
the fact that for very high temperatures the LJ fluid behaves practically as a HS
system but with an effective diameter smaller than the nominal value � .

Let us analyze the low-temperature and high-temperature limits of BLJ
2 with some

detail. Making use of the mathematical property Da.z D 0/ D 2a=2p�=� .1=2 �
a=2/ [47, 48], we have

lim
T�!1

BLJ
2 .T/

BHS
2

D
p
�� .1 � d=s/

� .1=2� d=2s/

�

16

T�

�d=2s

: (3.55)

On the other hand, the asymptotic behavior of Da.�z/ in the limit of large z is
Da.�z/ � p

2�ez2=4z�a�1=� .�a/ [47, 48]. This implies

lim
T�!0

BLJ
2 .T/

BHS
2

D �d

s
2d=s�1=2e1=T�p

2�T� : (3.56)

The asymptotic property B2 
 �e1=T� p
T� for T� 	 1 is independent of the

parameter s. In fact, it applies beyond the LJ potential (3.52). Consider a general
class of continuous potentials of the form

�.r/ D "��.r�/; r� D r=� ; (3.57)

where the dimensionless function ��.r�/ satisfies the general properties

lim
r�!0

��.r�/ D 1 ; lim
r�!1��.r�/ D 0 ; ��.1/ D 0 ; ��.r�

0 / D �1 ;
(3.58)

d��.r�/
dr�

ˇ

ˇ

ˇ

ˇ

r�Dr�
0

D 0 ;
d2��.r�/

dr�2

ˇ

ˇ

ˇ

ˇ

r�Dr�
0

� ��00

0 > 0 ; (3.59)

r�
0 > 1 denoting the location of the absolute minimum of ��.r�/. Thus, from (3.48)

we can write

B2.T/

BHS
2

D �d
Z 1

0

dr� r�d�1eY.r�;T�/ ; Y.r�;T�/ � ln
h

e���.r�/=T� � 1
i

:

(3.60)
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In the limit T� ! 0, eY.r�;T�/ presents a sharp maximum at r� D r�
0 , so that we can

evaluate the integral by the Laplace method [51]. First, we expand Y.r�;T�/ around
r� D r�

0 and truncate the expansion after the second-order term, i.e.,

Y.r�;T�/ � ln



e1=T� � 1
�

� ��00

0

2T�
.r� � r�

0 /
2

1 � e�1=T� � 1

T� � ��00

0

2T� .r
� � r�

0 /
2 ; (3.61)

where in the last step we have taken into account that T� � 1. Next, we approximate
the integral in (3.60) by a Gaussian integral, so that

B2.T/

BHS
2

� �dr�d�1
0 e1=T�

Z 1

�1
dx e���00

0 x2=2T� D �dr�d�1
0 e1=T�

q

2�T�=��00

0 :

(3.62)

In the particular case of the LJ potential (3.52), r�
0 D 21=s and ��00

0 D 21�2=ss2.
Therefore, (3.62) becomes (3.56).

3.8 Higher-Order Virial Coefficients for Hard Spheres

The evaluation of virial coefficients beyond B2 becomes a formidable task as
the order increases and it is thus necessary to resort to numerical Monte Carlo
(MC) methods to perform the multiple integrals involved. Needless to say, the
computational task is much more manageable in the case of HS fluids.

3.8.1 One-Component Systems

In the one-component case, the third and fourth virial coefficients are analytically
known [52, 53] and higher-order virial coefficients have been numerically evaluated
[39, 41, 42, 54–58].

The third virial coefficient is [59, 60]

B3
B22

D 2I3=4

�

d C 1

2
;
1

2

�

; (3.63)

where Ix.a; b/ D Bx.a; b/=B.a; b/ is the regularized beta function,

Bx.a; b/ D
Z x

0

dt ta�1.1 � t/b�1 ; B.a; b/ D B1.a; b/ D � .a/� .b/

� .a C b/
(3.64)

being the incomplete beta function and the beta function [47, 48], respectively. The
explicit expressions of B3=B22 for d � 12 can be found in Table 3.7. We note that
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Table 3.7 Third virial
coefficient B3 (in units of B22)
for HS fluids with dimensions
d D 1–12

d Exact Numerical

1 1 1

2
4

3
�

p
3

�
0:782 004 4 � � �

3
5

23
0:625

4
4

3
� 3

p
3

2�
0:506 340 0 � � �

5
53

27
0:414 062 5

6
4

3
� 9

p
3

5�
0:340 941 3 � � �

7
289

210
0:282 226 6 � � �

8
4

3
� 279

p
3

140�
0:234 613 6 � � �

9
6 413

215
0:195 709 2 � � �

10
4

3
� 297

p
3

140�
0:163 728 5 � � �

11
35 995

218
0:137 310 0 � � �

12
4

3
� 243

p
3

110�
0:115 397 7 � � �

B3=B22 is an irrational number (since it includes
p
3=�) if d D even, while it is a

rational number if d D odd. More generally [61],

B3
B22

D 2 � 2� .1C d=2/p
�

j
.d/
max
X

jD0

.�4/�j

.2j C 1/jŠ�
�

dC1
2

� j
� ; (3.65)

where j.d/max D .d � 1/=2 if d D odd and j.d/max D 1 if d D even. In the latter case,
however, the infinite series representation (3.65) converges so rapidly that a finite
upper limit & d=2 is enough for practical purposes.

The ratio B3=B22 monotonically decreases with increasing dimensionality. To
analyze this with more detail, note that B.a; b/ � � .b/a�b and Bx.a; b/ �
a�1xa.1 � x/b�1 if a � 1 with b > 0 and 0 < x < 1 [48]. Consequently,

B3
B22

� 4
p

�d=2

 p
3

2

!dC1
; d � 1 : (3.66)
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The influence of the parity of d is also present in the exact evaluation of B4, which
has been carried out separately for d D even [55] and d D odd [53]. The results for
d � 12 are shown in Table 3.8. We see that B4=B32 is always an irrational number that
includes

p
3=� and 1=�2 if d D even, while it includes

p
2=� and cos�1.1=3/=�

if d D odd. Interestingly, the fourth virial coefficient becomes negative for d � 8

[52].
Equation (3.49) and Tables 3.7 and 3.8 show that Bk D �k�1 for k D 2–4 in the

one-dimensional case. This is in fact true for any k, as will be seen in Chap. 5 [see
(5.67)].

Table 3.8 Fourth virial coefficient B4 (in units of B32) for HS fluids with dimensions d D 1–12

d Exact Numerical

1 1 1

2 2� 9
p
3

2�
C 10

�2
0:532 231 8 � � �

3
2 707

4 480
C 219

p
2

2 240�
� 4 131 cos�1.1=3/

4 480�
0:286 949 5 � � �

4 2� 27
p
3

4�
C 832

45�2
0:151 846 1 � � �

5
25 315 393

32 800 768
C 3 888 425

p
2

16 400 384�
� 67 183 425 cos�1.1=3/

32 800 768�
0:075 972 5 � � �

6 2� 81
p
3

10�
C 38 848

1 575�2
0:033 363 1 � � �

7
299 189 248 759

290 596 061 184
C 159 966 456 685

p
2

435 894 091 776�
0:009 864 9 � � �

�292 926 667 005 cos�1.1=3/

96 865 353 728�

8 2� 2 511
p
3

280�
C 17 605 024

606 375�2
�0:002 557 7 � � �

9
2 886 207 717 678 787

2 281 372 811 001 856
C 2 698 457 589 952 103

p
2

570 343 2027 504 640�
�0:008 580 8 � � �

�8 656 066 770 083 523 cos�1.1=3/

2 281 372 811 001 856�

10 2� 2 673
p
3

280�
C 49 048 616

1 528 065�2
�0:010 962 5 � � �

11
17 357 449 486 516 274 011

11 932 824 186 709 344 256
C 16 554 115 383 300 832 799

p
2

29 832 060 466 773 360 640�
�0:011 337 2 � � �

�52 251 492 946 866 520 923 cos�1.1=3/

11 932 824 186 709 344 256�

12 2� 2 187
p
3

220�
C 11 565 604 768

337 702 365�2
�0:010 670 3 � � �
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It is instructive at this point to insert a brief historical digression about a
controversy between Boltzmann (see Fig. 3.11) and van der Waals (see Fig. 3.12) on
the correct value of the fourth virial coefficient for HS systems [62]. After the kinetic
theory of gases was developed, a key problem concerning the so-called “excluded
volume” problem attracted the attention of nineteenth century physicists. It was
realized that, since molecules have a finite size, the actual volume of the container
of a gas had to be corrected in the EoS for the volume occupied by the molecules
themselves. Van der Waals’s arguments gave only the first order effect (second
virial coefficient) of the deviation. Later on, Boltzmann and Jäger independently
calculated the value of the third virial coefficient for a HS gas, correcting an error
made in a former calculation by van der Waals. Without any strict formalism to
guide him, since at that time the presently available expression (3.33c) for B4 in
terms of the intermolecular potential had not been derived yet, and realizing that
a further step with the same method was virtually impossible, Boltzmann went on
to compute in an admirable “tour de force” the fourth virial coefficient of three-
dimensional HSs (see Table 3.8). Boltzmann’s result turned out to be at odds with
the result derived by J.J. van Laar using a method suggested by van der Waals. It
took a long time and the advent of new and powerful statistical-mechanical methods

Fig. 3.11 Ludwig Eduard
Boltzmann (1844–1906)
(Photograph from Wikimedia
Commons, https://commons.
wikimedia.org/wiki/File:
Boltzmann2.jpg)

Fig. 3.12 Johannes Diderik
van der Waals (1837–1923)
(Photograph from Wikimedia
Commons, https://commons.
wikimedia.org/wiki/File:
Johannes_Diderik_van_der_Waals.
jpg)

https://commons.wikimedia.org/wiki/File:Boltzmann2.jpg
https://commons.wikimedia.org/wiki/File:Boltzmann2.jpg
https://commons.wikimedia.org/wiki/File:Boltzmann2.jpg
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https://commons.wikimedia.org/wiki/File:Johannes_Diderik_van_der_Waals.jpg
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Table 3.9 Fifth to twelfth virial coefficient Bk, k D 5; : : : ; 12, (in units of Bk�1
2 ) for HS fluids

with dimensions d D 2–8 (with missing values of B11 and B12 for d D 4)

d B5=B42 B6=B52 B7=B62 B8=B72
2 0:33355604.4/a 0:1988446.3/b 0:1148763.4/b 0:0649896.5/b

3 0:11025147.6/c 0:03888206.10/c 0:01302297.12/c 0:00418265.17/c

4 0:03570438.12/d 0:00773280.16/d 0:0014308.2/d 0:0002905.3/d

5 0:01295219.16/d 0:00098184.19/d 0:0004165.2/d �0:0001127.4/d
6 0:00752384.18/d �0:0017402.2/d 0:0013052.3/d �0:0008925.3/d
7 0:00707178.15/d �0:00351139.16/d 0:00253868.17/d �0:0019941.3/d
8 0:00743187.14/d �0:00451452.7/d 0:00341415.7/d �0:00286716.11/d
d B9=B82 B10=B92 B11=B102 B12=B112
2 0:0362202.11/b 0:019952.6/d 0:010933.19/d 0:00586.5/d

3 0:0013096.3/c 0:0004032.4/c 0:0001206.6/c 0:000031.6/c

4 0:0000457.6/d 0:0000106.8/d

5 0:0000789.5/d �0:0000468.10/d 0:0000309.11/d �0:000023.2/d
6 0:0006693.4/d �0:0005294.10/d 0:000438.2/d �0:000377.4/d
7 0:0016903.3/d �0:0015178.5/d 0:0014261.8/d �0:0013877.9/d
8 0:00260397.16/d �0:0025104.4/d 0:0025367.6/d �0:0026592.10/d

The numbers in parentheses indicate the statistical error in the last significant digits
aKratky [54]
bLabík et al. [56]
cSchultz and Kofke [39]
dZhang and Pettitt [42]

before Nijboer and van Hove [63] confirmed the correctness of Boltzmann’s value,
doing final justice to his outstanding degree of insight.

The MC numerical values of the virial coefficients B5–B12 up to d D 8 [39, 42,
54, 56–58] are displayed in Table 3.9. Apart from those coefficients, B13 and B14
for d D 2, B13–B16 for d D 6, B13–B20 for d D 7, B13–B24 for d D 8, B4–B8 for
d � 100, and B16, B32, B48, and B64 for 13 � d � 100 are known [42, 52].

Several features emerge from inspection of the virial coefficients. While the odd-
order coefficients B3, B5, B7, and B9 remain positive, the even-order coefficients B4,
B6, B8, and B10 become negative if d � 8, d � 6, d � 5, and d � 5, respectively.
These trends are confirmed by the known virial coefficients not included in Table 3.9
[42]. Even though the known first ten and twelve virial coefficients are positive if
d D 4 and d D 3 [39, 41], respectively, the behavior observed when d � 5 shows
that this does not need to be necessarily the case for all the virial coefficients. It is
then legitimate to speculate that, for three-dimensional HS systems, a certain high-
order coefficient Bk (perhaps with k D even) might become negative, alternating in
sign thereafter. This scenario would be consistent with a singularity of the EoS on
the (density) negative real axis that would determine the radius of convergence of
the virial series [42, 57, 58, 64].
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Equation (3.66), as well as the known data, show that

lim
d!1

Bk

Bk�1
2

D 0 ; k � 3 : (3.67)

This implies that, in the density range B2n D 2d�1� . 1 (which includes the fluid
regime), the virial expansion in the high dimensionality limit can be truncated after
the second virial coefficient and therefore (3.50) becomes exact in that limit [65, 66].

3.8.2 Multicomponent Systems

The evaluation of the virial coefficients becomes much more complicated for
mixtures, even in the case of HS systems.

3.8.2.1 Second Virial Coefficient

In the HS case, the evaluation ofbB˛� follows exactly the same steps as that of B2 for
the one-component system [see (3.49)], and thus

bBHS
˛� D 2d�1vd�

d
˛� : (3.68)

The net second virial coefficient B2 is obtained by inserting (3.68) into (3.36a). In
the additive case, i.e., if �˛� D 1

2

�

�˛ C ��
�

for every pair .˛; �/, one has

bBAHS
˛� D vd

2

d
X

kD0

 

d

k

!

�k
˛�

d�k
� ; (3.69a)

BAHS
2 D vd

2

d
X

kD0

 

d

k

!

MkMd�k ; (3.69b)

where

Mk �
X

˛

x˛�
k
˛ (3.70)

denotes the kth moment of the size distribution.
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3.8.2.2 Third Virial Coefficient

For the evaluation ofbB˛�ı we proceed as follows. First, we note that [see (3.37b)]

bB˛�ı D �1
3

Z

dr1

Z

dr2 f˛� .r1/f˛ı.r2/f�ı.r12/

D �1
3

1

.2�/d

Z

dk Qf˛� .k/Qf˛ı.k/Qf�ı.k/ ; (3.71)

where

Qf˛� .k/ �
Z

dr e�ik�rf˛� .r/ D .2�/d=2
Z 1

0

dr rd�1f˛� .r/
Jd=2�1.kr/

.kr/d=2�1
(3.72)

is the Fourier transform of the Mayer function. In the second equality of (3.72),
J�.x/ is the Bessel function of the first kind of order � and use has been made of the
fact that f˛� .r/ is an isotropic function. The inverse Fourier transformation is

f˛� .k/ D 1

.2�/d

Z

dk eik�rQf˛� .k/ D 1

.2�/d=2

Z 1

0

dk kd�1 Qf˛� .k/Jd=2�1.kr/

.kr/d=2�1
:

(3.73)

Equation (3.71) is valid for any isotropic potential. Now, in the case of HS
systems,

Qf HS
˛� .k/ D �.2��˛� /d=2k�d=2Jd=2.k�˛� / : (3.74)

Inserting this into (3.71), we finally get

bBHS
˛�ı D v2d

d2

3
25d=2�1� .d=2/

�

�˛��˛ı��ı
�d=2

�
Z 1

0

dk k�.1Cd=2/Jd=2
�

k�˛�
�

Jd=2 .k�˛ı/ Jd=2
�

k��ı
�

: (3.75)

The mathematical property

d2

3
2d=2� .d=2/

Z 1

0

dx x�.1Cd=2/
�

Jd=2 .x/
�3 D I3=4

�

d C 1

2
;
1

2

�

(3.76)

yields

bBHS
˛˛˛ D v2d2

2d�1�2d
˛ I3=4

�

d C 1

2
;
1

2

�

; (3.77)
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in agreement with (3.63). On the other hand, the evaluation of the integral in (3.75)
for arbitrary values of .�˛� ; �˛ı ; ��ı/ becomes much more involved, especially if
d D even.

It can be proved that (3.75) is equivalent to (see also Sect. 6.5.1)

bBHS
˛�ı D vd2

d�1

3
f3g�d

˛�V�˛ı;��ı .�˛� / ; (3.78)

where Va;b.r/ denotes the intersection volume of two d-dimensional spheres of radii
a and b whose centers are separated by a distance r. Analogously to the convention
employed in (3.15c) and (3.15d), henceforth a numerical coefficient enclosed by
curly braces, such as f3g in (3.78), refers to the number of terms equivalent, except
for a permutation of indices, to the shown canonical one. For instance,

f3g�d
˛�V�˛ı ;��ı .�˛� / ! �d

˛�V�˛ı ;��ı .�˛� /C �d
˛ıV�˛� ;��ı .�˛ı/

C�d
�ıV�˛��˛ı .��ı/ : (3.79)

The structure of Va;b.r/ is

Va;b.r/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

2dvd min.ad; bd/ ; 0 � r � ja � bj ;
NVa;b.r/ ; ja � bj � r � a C b ;

0 ; r � a C b ;

(3.80)

where NVa;b.r/ is the relevant, non-trivial part of Va;b.r/. In the case d D odd, NVa;b.r/
has the form of a polynomial in r of degree 2.d � 1/ divided by rd�2 [67]. For
example, if d D 3 and 5,

NVa;b.r/ D �.a C b � r/2

12r

�

r2 C 2.a C b/r � 3.b � a/2
�

; .d D 3/ ; (3.81a)

NVa;b.r/ D �2.a C b � r/3

480r3

h

3r5 C 9.a C b/r4 C 2.18ab � a2 � b2/r3

�30.b � a/2.a C b/r2 C 5.b � a/4.3r C a C b/
i

; .d D 5/ :

(3.81b)

The mathematical expression of NVa;b.r/ is much more involved if d D even. In
particular, for d D 2 one has

NVa;b.r/ D a2 cos�1 r2 C a2 � b2

2ar
C b2 cos�1 r2 C b2 � a2

2br

�1
2

p

2r2.a2 C b2/� .b2 � a2/2 � r4 ; .d D 2/ : (3.82)
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If a D b, the intersection volume for any d can be expressed as [60, 68, 69]

NVa;a.r/ D vd.2a/dI1�r2=4a2

�

d C 1

2
;
1

2

�

D vd.2a/d

2

41 � 2� .1C d=2/

�1=2

j
.d/
max
X

jD0

.�1/j.r=2a/2jC1

.2j C 1/jŠ�
�

dC1
2

� j
�

3

5 ; (3.83)

where j.d/max was defined below (3.65). If d D odd, the second line of (3.83) gives
NVa;a.r/ as an explicit polynomial in r of degree d. In the case d D even, NVa;a.r/ is

expressed as a series in powers of r=2a � 1 with a rapid convergence. Needless to
say, (3.65) is recovered from (3.78) by setting r D a D � in (3.83).

Equations (3.75) and (3.78) apply to both AHS and NAHS mixtures. Now we
restrict ourselves to additive mixtures. In that case, one always has j�˛ı � ��ıj �
�˛� � �˛ı C ��ı and thus V�˛ı ;��ı .�˛� / D NV�˛ı;��ı .�˛� /. If d D odd, the

composition-independent coefficientsbB˛�ı turn out to have the polynomial structure

bBAHS
˛�ı D v2d

d
X

k˛D0

d
X

k�D0

d
X

kıD0
.k˛Ck�CkıD2d/

Ck˛kˇk� �
k˛
˛ �

k�
� �

kı
ı ; .d D odd/ ; (3.84)

where the coefficients Ck˛kˇk� are rational numbers. As a consequence, according to
(3.36b),

BAHS
3 D v2d

d
X

k˛D0

d
X

k�D0

d
X

kıD0
.k˛Ck�CkıD2d/

Ck˛kˇk�Mk˛Mk�Mkı ; .d D odd/ : (3.85)

In particular, making use of (3.78) and (3.81),

bBAHS
˛�ı D


�

6

�2
�

f6g�3˛�2� �ı C 1

3
f3g�3˛�3� C 3�2˛�

2
� �

2
ı

�

; .d D 3/ ; (3.86a)

BAHS
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�
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3

�

; .d D 3/ ; (3.86b)
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3
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2
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3
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�5˛�
5
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4
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2
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3
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; .d D 5/ ; (3.86c)

BAHS
3 D
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�2

60

�2
�

10M1M4M5 C 20M2M3M5 C 25M2M
2
4 C 50M2

3M4 C M2
5

�
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.d D 5/ : (3.86d)
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Thus, from (3.69b) and (3.85) we see that, if d D odd, the whole dependence
of the second and third virial coefficients on composition (number of components,
mole fractions, and sizes) is encapsulated by the first d moments. This implies that
the EoS of two completely different AHS mixtures sharing the same values of the
first d moments is exactly the same up to the level of the third virial coefficient,
provided that d D odd. Nevertheless, in the case d D even this property is broken
down after the second virial coefficient. In particular, from (3.82) one obtains

bBAHS
˛�ı D


�

4

�2 1

3�
f3g
h

.�˛ C ��/
2.�˛ C �ı/

2 cos�1 �˛.�˛ C �� C �ı/ � ���ı
.�˛ C ��/.�˛ C �ı/

�.�� C �ı/
2
q

�˛���ı.�˛ C �� C �ı/
i

; .d D 2/ : (3.87)

The non-polynomial form of bBAHS
˛�ı if d D even prevents one from obtaining a

compact expression for BAHS
3 in terms of a finite number of moments. On the other

hand, a practical approximation ofbBAHS
˛�ı for d D 2 is [70]

bBAHS
˛�ı '


�

4

�2 1

3

h

�2˛�
2
� C �2˛�

2
ı C �2� �

2
ı C .b3 � 1/�˛���ı.�˛ C �� C �ı/

i

;

.d D 2/ ; (3.88)

what implies

BAHS
3 '


�

4

�2 �
M2
2 C .b3 � 1/M2

1M2

�

; .d D 2/ : (3.89)

As can be seen from Fig. 3.13, the polynomial approximation (3.88) is practically
indistinguishable from the exact expression (3.87).

3.8.2.3 Fourth Virial Coefficient

Obviously, the mathematical difficulties already found in the evaluation of the third
virial coefficient of HS mixtures are significantly increased when going to the fourth
virial coefficient. Not only isbB˛�ı% made of three different classes of diagrams [see
(3.37c) and (3.38)] but also each one of them represents a higher order integral.

The two first classes of diagrams can be expressed as [71]

bB.I/˛�ı% D �d2d�3vd

Z min.�˛�C�˛ı;��%C�ı%/

0

dr rd�1V�˛� ;�˛ı .r/V��%;�ı% .r/ ; (3.90a)

bB.II/˛�ı% D d2d�3vd

Z min.��ı;�˛�C�˛ı ;��%C�ı%/

0

dr rd�1V�˛� ;�˛ı .r/V��%;�ı% .r/ : (3.90b)
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Fig. 3.13 Plot of the
(reduced) two-dimensional
composition-independent
third virial coefficient
bBAHS
˛�ı =.�=4/

2b3�2˛ versus
��=�˛ for, from bottom to top,
�ı=�˛ D 0, 0:2, 0:4, 0:6, 0:8,
and 1. The solid lines and the
circles represent the exact and
approximate values, as given
by (3.87) and (3.88),
respectively

The upper limit in the integral of (3.90a) is a consequence of the property
Va;b.r/ D 0 if r � a C b [see (3.80)]. In (3.90b) the Mayer function f HS

�ı .r/ D
��.��ı � r/ imposes the additional constraint r � ��ı . The third diagram,bB.III/˛�ı% ,
cannot be expressed as a single integral.

For concreteness, now we focus on three-dimensional (d D 3) AHS mixtures.
Making use of (3.80) and (3.81a), it is possible to obtain

bB.I/˛�ı% CbB.II/˛�ı% CbB.II/�˛%ı

ˇ

ˇ

ˇ

AHS
D
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� �

3
ı C �3˛�
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� �

3
% C �3˛�

3
ı �

3
%

C�3� �3ı �3%
�

C 3�˛���ı�%
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�˛���ı C �˛���%

C�˛�ı�% C ���ı�%
� �

�˛�� C �˛�ı C �˛�%

C���ı C ���% C �ı�%
�

i

; .d D 3/ : (3.91)

The above combination is invariant under index permutation and therefore [see
(3.37c)] bB˛�ı% D 3ŒbB.I/˛�ı% C bB.II/˛�ı% C bB.II/�˛%ı� C bB.III/˛�ı% . Thus, only the complete

star diagrambB.III/˛�ı% [see (3.38c)] remains to be determined. Unfortunately, the latter
diagram can be analytically evaluated only in some limiting situations. First, if all
the indices are equal,

bB.III/˛˛˛˛ D

�

6

�3

�9˛b.III/4I0 ; .d D 3/ ; (3.92)
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Fig. 3.14 Configuration
where the three bigger
spheres (˛, � , and ı) are
tangent to each other and the
smallest sphere (%) has the
maximum possible size to fit
in the inner hole [see (3.94)].
In this particular example,
��=�˛ D 3

4
, �ı=�˛ D 1

2
, and

�%=�˛ D 3
47




6
p
6� 13
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'
0:108

where

b.III/4I0 D �
"

4 131 cos�1.1=3/
70�

� 219
p
2

35�
� 356

35

#

; .d D 3/ : (3.93)

Next, if the smallest of the four spheres ˛, � , ı, and % (say sphere %) fits in the
inner hole created when the other three spheres are in a tangent configuration
(see Fig. 3.14), the associated coefficient bB.III/˛�ı% can be obtained exactly [71]. This
Apollonian condition is satisfied if

�% � �˛���ı

�˛�� C �˛�ı C ���ı C 2
p

�˛���ı.�˛ C �� C �ı/
: (3.94)

In that case, one has [71]

bB.III/˛�ı%

ˇ

ˇ

ˇ

AHS
D �

h

bB.I/˛�ı% CbB.II/˛�ı% CbB.II/�˛%ı

i

AHS
�

�

6

�3 9�3%
280

h

70�2˛�
2
� �

2
ı

�35�%�˛���ı.�˛�� C �˛�ı C ���ı/C 7�2% .�
2
˛�

2
� C �2˛�

2
ı

C�2� �2ı � 2�2˛���ı � 2�2� �˛�ı � 2�2ı �˛�� /C 21�3% .�˛ C �� /

�.�˛ C �ı/.�� C �ı/C 12�4% .�
2
˛ C �2� C �2ı C 3�˛�� C 3�˛�ı

C3���ı/C 15�5% .�˛ C �� C �ı/C 5�6%

i

; .d D 3/ : (3.95)

In the particular case ˛ D � D ı, the condition (3.94) becomes �%=�˛ � q0, with
q0 � 2

3

p
3 � 1 ' 0:1547, and (3.95) reduces to

bB.III/˛˛˛%

ˇ

ˇ

ˇ

AHS
D

�

6

�3

�9˛b.III/3I1 .�%=�˛/ ; �%=�˛ � q0 ; .d D 3/ ; (3.96)
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where

b.III/3I1 .q/ D �1
8

� 9q

8
� 9q2

2
� 6q3 C 27q4

8
C 27q5

40
� 27q6

5
� 162q7

35
� 81q8

56
� 9q9

56
:

(3.97)

In the complementary situation �%=�˛ > q0, the exact expression for bB.III/˛˛˛% is
[46, 72]

bB.III/˛˛˛%

ˇ

ˇ

ˇ

AHS
D

�

6

�3

�9˛

h

b.III/3I1 .�%=�˛/C	b3I1.�%=�˛/
i

; �%=�˛ > q0 ;

.d D 3/ ; (3.98)

where

	b3I1.q/ D 3
p

3q2 C 6q � 1
1 120�




745C 228q � 210q2 � 84q3 C 279q4 C 180q5

C30q6
�

� 243
�

8C 6q C 3q2
�

140�
tan�1p3q2 C 6q � 1C 27.1C q/

280�

�



144� 36q C 90q2 � 20q3 � 85q4 C 64q5 C 104q6 C 40q7 C 5q8
�

� tan�1
p

3q2 C 6q � 1
q C 1

: (3.99)

It can be checked that, in the region q & q0,

	b3I1.q/ ' 7 776� 33=4
385�

.q � q0/
11=2 : (3.100)

This means thatbB.III/˛˛˛% and its first five derivatives with respect to �% are continuous
at �% D q0�˛ . On the other hand, the sixth derivative is finite when the limit is taken
from the left and infinite if the limit is taken from the right.

The non-polynomial form of 	b3I1.q/ implies that, in contrast to the second-
and third-order composition-independent virial coefficients [see (3.69a) and (3.84)],
the fourth-order coefficients fail to have a polynomial dependence on the sphere
diameters, even if d D odd. As a consequence, the full coefficient B4 cannot be
expressed in terms of a finite number of moments.

Apart from bB.III/˛˛˛˛ [see (3.92)] and bB.III/˛˛˛% [see (3.96) and (3.98)], the diagram
bB.III/˛�ı˛ is not exactly known for general three-dimensional AHS mixtures, except if
(3.94) is fulfilled. On the other hand, an extremely accurate semiempirical formula
forbB.III/˛˛%% is available [46]. It is given by

bB.III/˛˛%%

ˇ

ˇ

ˇ

AHS
D

�

6

�3

�9˛b.III/2I2 .�%=�˛/ ; .d D 3/ ; (3.101)
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Table 3.10 Numerical
values of the coefficients in
(3.102b)

j Aj Cj

0 1:490 955 765 990 51 1

1 �6:667 961 931 174 69 �5:449 505 086 375 50
2 4:150 337 817 416 92 7:741 899 937 434 46

3 7:167 099 184 147 82 �1:407 969 391 696 07
4 11:407 948 295 081 4 8:637 943 845 908 24

where

b.III/2I2 .q/ D �q3
1C 15

4
q C 28

5
q2 C 15

4
q3 C q4

p

q2 C 1
C 2

p
2q6

.q2 C 1/3=2
R.q/ ; (3.102a)

R.q/ D b.III/4I0 C 151
p
2

20
C Œ1� t.q/�

P4
jD0 Aj tj.q/

P4
jD0 Cj tj.q/

; t.q/ �
s

2q

q2 C 1
:

(3.102b)

Here, b.III/4I0 is given by (3.93) and the numerical values of the coefficients Aj and Cj

are displayed in Table 3.10
All the above results for the composition-independent fourth virial coefficients

of three-dimensional AHS mixtures are enough to fully characterize the coefficients
of a binary mixture, as defined by (3.41a) and (3.42):

b4I0 D 2 707

70
C 219

p
2

35�
� 4 131 cos�1.1=3/

70�
; (3.103a)

b3I1.q/ D 1

4
C 9q

4
C 9q2 C 21q3

4
C 27q4

8
C 27q5

40
� 27q6

5
� 162q7

35

�81q8

56
� 9q9

56
C�.q � q0/	b3I1.q/ ; (3.103b)

b2I2.q/ D 3q3.1C q/

�

1C 11q

4
C q2

�

� q3
1C 15

4
q C 28

5
q2 C 15

4
q3 C q4

p

q2 C 1

C 2
p
2q6

.q2 C 1/3=2
R.q/ ; (3.103c)

b1I3.q/ D q9b3I1.1=q/ (3.103d)

b0I4.q/ D q9b4I0 : (3.103e)

These coefficients are plotted in Fig. 3.15.
The computation of the fourth virial coefficientbB.III/˛�ı% for NAHS mixtures and of

virial coefficients beyond fourth order for both AHS and NAHS mixtures requires
numerical MC methods [38, 73–86].
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Fig. 3.15 Plot of the rescaled
composition-independent
fourth virial coefficients for a
binary three-dimensional
AHS mixture

3.9 Simple Approximations for the Equation of State of Hard
Disks and Spheres

In terms of the packing fraction � defined by (3.51), the virial series (3.8) for d-
dimensional HS systems becomes

Z D 1C 2d�1�C b3�
2 C b4�

3 C � � � ; (3.104)

where the rescaled virial coefficients are defined by (3.46). The numerical values of
b2–b12 as obtained from Tables 3.7, 3.8 and 3.9 for hard-disk (HD) and HS fluids
are displayed in Table 3.11.

Although incomplete, the knowledge of the first few virial coefficients is
practically the only access to exact information about the EoS of the HS fluid. If the
packing fraction � is low enough, the virial expansion truncated after a given order
is an accurate representation of the exact EoS. However, this tool is not practical
at moderate or high values of �. In those cases, instead of truncating the series, it
is far more convenient to construct an approximant which, while keeping a number
of exact virial coefficients, includes all orders in density [87]. The most popular
class is made of Padé approximants [88], where the compressibility factor Z is
approximated by the ratio of two polynomials. Obviously, as the number of retained
exact virial coefficients increases so does the complexity of the approximant. In
this section, however, we will deal with simpler, but yet accurate, approximations.
They will be tested by comparison with MC and/or molecular dynamics (MD)
computer simulations, the latter method having been pioneered by Berni J. Alder
(see Fig. 3.16).
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Table 3.11 Numerical
values of the rescaled virial
coefficients b2–b12 for HDs
(d D 2) and HSs (d D 3)

k d D 2 d D 3

2 2 4

3 3:128 017 75 � � � 10

4 4:257 854 46 � � � 18:364 768 38 � � �
5 5:336 896 6.6/ 28:224 376.15/

6 6:363 027 2.10/ 39:815 23.10/

7 7:352 08.3/ 53:342 1.5/

8 8:318 67.6/ 68:529.3/

9 9:272 4.3/ 85:83.2/

10 10:215.3/ 105:70.10/

11 11:195.19/ 126:5.6/

12 12:00.10/ 130(25)

Fig. 3.16 Berni Julian Alder
(b. 1925)
(Photograph by Julie Russell,
reproduced with permission)

3.9.1 Hard Disks (d D 2)

In the two-dimensional case, the virial series truncated after the third virial
coefficient is

Z D 1C 2�C b3�
2 C � � � ; � � �

4
n�2 ; (3.105)

where

b3 D 4

�

4

3
� p

3�

�

D 3:128 � � � ' 25

8
: (3.106)

In 1975, Henderson (see Fig. 3.17) proposed a simple EoS with two main ingre-
dients: (1) consistency with the first three virial coefficients (with the replacement
b3 ! 25

8
for simplicity) and (2) a double pole at � D 1. The resulting Henderson

(H) EoS is [89]

ZH D 1C �2=8

.1 � �/2
: (3.107)
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Fig. 3.17 Douglas J.
Henderson (b. 1934)
(Photograph courtesy of D. J.
Henderson)

Fig. 3.18 Close-packing
configuration in a HD system.
The fraction of the total area
occupied by the disks is

�cp D
p
3�

6

(Image from Wikimedia
Commons, http://commons.
wikimedia.org/wiki/File:
Circle_packing_(hexagonal).
svg)

Despite the simplicity of this prescription, it provides fairly accurate values,
although it tends to overestimate the compressibility factor for high densities of the
stable fluid phase [90, 91]. A more accurate prescription was proposed by Luding
(L) [92–94] by adding a correction term:

ZL D 1C �2=8

.1 � �/2 � �4

64.1� �/4 : (3.108)

On the other hand, both (3.107) and (3.108) assume that the pressure is finite for any
� < 1, whereas by geometrical reasons the maximum conceivable packing fraction

is the close-packing value �cp D
p
3�
6

' 0:907 (see Fig. 3.18).
Another simple approximation is based on (1) consistency with the first two virial

coefficients and (2) a single pole at �cp. Thus, the constraints are

Z D
(

1C 2�C � � � ; � 	 1 ;

1 ; � ! �cp :
(3.109)

A simple expression satisfying those requirements was constructed by Santos,
López de Haro, and Yuste (SHY) [95, 96]. It reads

ZSHY D 1

1 � 2�C 2�cp�1
�2cp

�2
: (3.110)

http://commons.wikimedia.org/wiki/File:Circle_packing_(hexagonal).svg
http://commons.wikimedia.org/wiki/File:Circle_packing_(hexagonal).svg
http://commons.wikimedia.org/wiki/File:Circle_packing_(hexagonal).svg
http://commons.wikimedia.org/wiki/File:Circle_packing_(hexagonal).svg


3.9 Simple Approximations for the Equation of State of Hard Disks and Spheres 75

Fig. 3.19 Comparison
between MC and MD
computer-simulation values
of the EoS of a HD fluid
[92, 99] and the theoretical
approximations (3.107),
(3.110), and (3.111)

It is interesting to note that, if one formally makes the replacement �cp ! 1, (3.110)
becomes

ZSPT D 1

.1 � �/2
; (3.111)

which coincides with the EoS obtained from the so-called Scaled Particle Theory
(SPT) [97, 98].

Figure 3.19 compares the predictions of (3.107), (3.110), and (3.111) against
MC [99] and MD [92] computer simulations. Despite their simplicity, the three
approximations, especially ZH and ZSHY, exhibit an excellent performance, even
at packing fractions where the pressure is about ten times higher than the ideal-gas
one. The curve representing (3.108) is not plotted in Fig. 3.19 because it tends to lie
in between those representing ZH and ZSHY.

3.9.2 Hard Spheres (d D 3)

In the three-dimensional case, � D .�=6/n�3 and the second and third reduced
virial coefficients are integer numbers: b2 D 4 and b3 D 10 (see Table 3.11). The
fourth virial coefficient, however, is a transcendental number (see Table 3.8), namely
b4 D 18:364 768 38 � � � . If we round off this coefficient (b4 ' 18), we realize that
b4 � b3 D .b3 � b2/ C 2. Interestingly, by continuing the rounding-off process
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Fig. 3.20 Norman Frederick
Carnahan (b. 1942)
(Photograph courtesy of N.F.
Carnahan)

Fig. 3.21 Kenneth Earl
Starling (b. 1935)
(Photograph courtesy of N.F.
Carnahan)

(b5 ' 28, b6 ' 40, see Table 3.11), the relationship bk � bk�1 D .bk�1 � bk�2/C 2

is seen to extend up to k D 6.
In the late sixties only the first six virial coefficients were accurately known and

thus Carnahan (see Fig. 3.20) and Starling (see Fig. 3.21) proposed to extrapolate
the relationship bk � bk�1 D .bk�1 � bk�2/C 2 to any k � 2, what is equivalent to
the approximation [100]

bk D k2 C k � 2 : (3.112)

By summing the virial series within that approximation, they obtained the famous
Carnahan–Starling (CS) EoS:

ZCS D 1C �C �2 � �3

.1 � �/3 : (3.113)
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Fig. 3.22 Compressibility
factor for three-dimensional
HSs, as obtained from MD
computer simulations [102],
from the CS EoS (3.113), and
from the SPT EoS (3.115)

The corresponding isothermal susceptibility and (excess) Helmholtz free energy per
particle are

�T;CS D
	

@ .�ZCS/

@�

��1
D .1 � �/4
1C 4�C 4�2 � 4�3 C �4

; (3.114a)

ˇaex
CS D

Z 1

0

dt
ZCS.�t/ � 1

t
D �

4 � 3�
.1 � �/2 : (3.114b)

Equation (3.113) can also be seen as a small correction to the SPT EoS for HSs.
The latter reads [97, 98, 101]

ZSPT D 1C �C �2

.1 � �/3
: (3.115)

Figure 3.22 shows that, despite its simplicity, the CS equation exhibits an
excellent performance over the whole fluid stable region and even in the metastable
fluid region (� � 0:492 [103]), where the crystal is the stable phase. This is
remarkable because the approximation bk D k2Ck�2 (according to which b7 D 54,
b8 D 70, b9 D 88, b10 D 108, b11 D 130, b12 D 154) fails to capture the
rounding-off of the virial coefficient bk for k � 7 (see Table 3.11), the deviation
increasing with k. The explanation of this paradox might partially lie in the fact that
the CS recipe underestimates b4 and b5 but this is compensated by an overestimate
of the higher virial coefficients. Apart from that, and analogously to Henderson’s
EoS (3.107), the CS EoS (3.113) artificially provides finite values even for packing
fractions higher than the close-packing value �cp D �

p
2=6 ' 0:7405.
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There are other many empirical or semi-empirical proposals for the thermo-
dynamic properties of HDs, HSs, or even hard hyperspheres [87, 104, 105], but
most of them have more sophisticated forms than (3.107), (3.108), (3.110), (3.111),
(3.113), or (3.115), and rely on the knowledge of a larger number of empirical virial
coefficients.

3.9.3 Extension to Mixtures: Effective One-Component Fluid
Approaches

3.9.3.1 Heuristic Approximations

As expected, the search for reliable EoS for HS mixtures is much more difficult than
in the one-component case. To begin with, the (rescaled) virial coefficients are not
pure numbers but functions of the size composition of the mixture.

Here we will focus on simple approaches consisting in extending a given one-
component compressibility factor Zoc.�/, such as (3.107), (3.108), (3.110), (3.111),
(3.113), or (3.115), to construct a multicomponent compressibility factor Z.�/,
where in the latter case the total packing fraction is defined as

� � nvd

X

˛

x˛�
d
˛ : (3.116)

The problem can be stated as follows. Given a HS fluid mixture with a certain size
composition at a packing fraction �, can we find an effective one-component HS
fluid such that the EoS of the former system can be mapped onto that of the latter?
A specially simple recipe is provided by the so-called one-fluid van der Waals (see
Fig. 3.12) theory [106, 107], according to which

ZvdW.�/ D Zoc.�eff/ ; �eff � �

P

˛� x˛x��d
˛�

Md
; (3.117)

where we recall the definition (3.70) of the size distribution moments. As can be
seen from (3.36a) and (3.68), this approximation is consistent with the second virial
coefficient of the mixture.

Equation (3.117) is in principle applicable to both AHS and NAHS mixtures,
but here we will restrict ourselves to the additive case. In an alternative proposal by
Santos, Yuste, and López de Haro (SYH) [108–110], the excess quantity Z.�/ � 1

is expressed as a linear combination of Zoc.�/ � 1 and .1 � �/�1 � 1 D �=.1 � �/,
with coefficients such that the second and third virial coefficients of the mixture are
exactly reproduced:

ZSYH.�/ D 1C
Ob3 � Ob2
b3 � b2

ŒZoc.�/ � 1�C b3 Ob2 � b2 Ob3
b3 � b2

�

1 � �
: (3.118)
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Here, Obk � Bk=.vdMd/
k�1 are the rescaled virial coefficients of the HS mixture.

Note that Obk ! bk in the one-component limit. At the level of the free energy, the
approximation (3.118) can be written as

ˇaex
SYH.�/ D Ob3 � Ob2

b3 � b2
ˇaex

oc.�/ � b3 Ob2 � b2 Ob3
b3 � b2

ln.1� �/ ; (3.119)

where aex � Fex=N is the excess Helmholtz free energy per particle, aex
oc is the cor-

responding one-component quantity, and use has been made of the thermodynamic
relation (1.36b).

In a slightly different proposal, Barrio and Solana (BS) [111, 112] assumed that
the ratio of excess compressibility factors, ŒZ.�/�1�=ŒZoc.�/�1�, is a linear function
of �, with coefficients adjusted to reproduce the second and third virial coefficients:

ZBS.�/ D 1C ŒZoc.�/ � 1�
 Ob2

b2
� b3 Ob2 � b2 Ob3

b22
�

!

: (3.120)

The associated free energy is

ˇaex
BS.�/ D ˇaex

oc.�/

 Ob2
b2

� b3 Ob2 � b2 Ob3
b22

�

!

C b3 Ob2 � b2 Ob3
b22

�

Z 1

0

dtˇaex
oc.�t/ :

(3.121)

In the case of AHS fluids, Ob2 can be expressed in terms of the first d moments of
the size distribution [see (3.69b)]. In particular,

Ob2 D 1C m�1
2 ; .d D 2/ ; (3.122a)

Ob2 D 1C 3
m2

m3

; .d D 3/ ; (3.122b)

where

mk � Mk

Mk
1

(3.123)

are reduced moments. Nevertheless, the third coefficient Ob3 is a function of the first
d moments only if d D odd. In particular, (3.86b) implies that

Ob3 D 1C 6
m2

m3

C 3
m3
2

m2
3

; .d D 3/ : (3.124)

On the other hand, as seen from Fig. 3.13, an excellent approximation in the case
d D 2 is provided by (3.88) and (3.89), i.e.,

Ob3 ' 1C .b3 � 1/m�1
2 ; .d D 2/ : (3.125)
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Taking all of this into account, (3.118) and (3.120) yield

ZSYH.�/ D 1C m�1
2 ŒZoc.�/ � 1�C �

1 � m�1
2

� �

1 � � ; .d D 2/ ; (3.126a)

ZSYH.�/ D 1C 1

2

�

m2

m3

C m3
2

m2
3

�

ŒZoc.�/ � 1�C
�

1C m2

m3

� 2
m3
2

m2
3

�

�

1 � �
; .d D 3/ ;

(3.126b)

ZBS.�/ D 1C ŒZoc.�/ � 1�

	

1C m�1
2

2
� b3 � 2

4
.1 � m�1

2 /�

�

; .d D 2/ ;

(3.127a)

ZBS.�/ D 1C ŒZoc.�/� 1�
	

1C 3m2=m3

4
� 3

8

�

1C m2

m3

� 2m3
2

m2
3

�

�

�

; .d D 3/ ;

(3.127b)

respectively. If the EoS (3.107) is used for Zoc.�/ in (3.126a), the Jenkins–Mancini
generalization to mixtures [113] is readily obtained.

Expressions similar to (3.126) and (3.127) hold for the excess Helmholtz free
energy per particle, which is then expressed in terms of � and the first d moments.
In general, an excess AHS free energy ˇaex.nI fx�g/ is said to have a truncatable
structure if it depends on the size distribution fx�g only through a finite number of
moments [114–116].

In the heuristic proposals (3.118) and (3.120), the effective one-component fluid
associated with a given mixture has the same packing fraction as that of the mixture,
i.e., �eff D �, but this is not a necessary condition, as exemplified by the vdW
prescription (3.117). In order to construct a proposal where �eff D � is not imposed
a priori [117], let us resort to a couple of consistency conditions.

3.9.3.2 Two Consistency Conditions

We first consider an AHS mixture characterized by a total number density n D N=V
and a set of mole fractions fx1; x2; : : :g. According to (3.116), the packing fraction is
� D nvdMd. Let us assume that, without modifying the volume V , we add N0 D x0N
extra particles of diameter �0, so that the augmented system has a number density
n0 D .N C N0/=V D n.1 C x0/, a set of mole fractions fx0

0; x
0
1; x

0
2; : : :g, where

x0
� D N�=.N C N0/ D x�=.1C x0/, and a packing fraction �0 D �C nx0vd�

d
0 . Now,

if the extra particles have zero diameter (�0 ! 0), it can be proved [118] that

lim
�0!0

ˇaex
�

�I ˚x0
0; x

0
1; x

0
2; : : :

� D ˇaex.�I fx1; x2; : : :g/
1C x0

� x0
1C x0

ln.1 � �/ ;

(3.128a)
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lim
�0!0

Z
�

�I ˚x0
0; x

0
1; x

0
2; : : :

� � 1 D Z.�I fx1; x2; : : :g/� 1
1C x0

C x0
1C x0

�

1 � � :

(3.128b)

Equations (3.128) hold for arbitrary x0 > 0. The scaling relation (3.128b) implies

lim
�0!0

Obk
�˚

x0
0; x

0
1; x

0
2; : : :

� D 1C
Obk.fx1; x2; : : :g/� 1

1C x0
: (3.129)

This can be used to prove that the approximation (3.118) is fully consistent
with the exact condition (3.128b), regardless of the choice for Zoc.�/, while the
approximation (3.120) is not.

Now we turn to another more stringent condition. Instead of taking the limit
�0 ! 0 for an arbitrary number N0 of extra particles, we assume that N0 	 N (i.e.,
x0 ! 0) and �0 ! 1, in such a way that x0�d

0 =� ! 0 (i.e., the extra “big” particles
occupy a negligible volume). In that case [119–122],

ˇp.�I fx1; x2; : : :g/ D lim
x0!0;�0!1

ˇ�ex
0 .�

0I fx0
0; x

0
1; x

0
2; : : :g/

vd�
d
0

: (3.130)

This condition is related to the reversible work needed to create a cavity large
enough to accommodate a particle of infinite diameter. Using (1.36b) and (1.36c),
one can rewrite (3.130) as

1C �
@̌ aex.�I fx1; x2; : : :g/

@�
D lim

x0!0;�0!1
1

vd�
d
0

@̌ aex.fn0; n1; n2; : : :g/
@n0

;

(3.131)

where on the right hand side the change of independent variables .�0I fx0
0; x

0
1; x

0
2; : : :g/

! .fn0; n1; n2; : : :g/ has been carried out.
The exact conditions (3.128a) and (3.131) complement each other since the

former accounts for the limit where one of the species is made of point particles,
whereas the latter accounts for the opposite limit where a few particles have a very
large size.

3.9.3.3 Consistent Approximations

Now we restrict ourselves to (approximate) free energies with a truncatable structure
involving the first d moments, i.e.,

ˇaex.�I fx�g/ ! ˇaex.�I fm2; : : : ;mdg/ ; (3.132)
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and enforce (3.128a) and (3.131). First, noting that in the augmented system of
(3.128a) the reduced moments are m0

k D .1C x0/k�1mk, we get

ˇaex.�I f�m2; : : : ; �
d�1mdg/C ln.1 � �/ D ��1 Œˇaex.�I fm2; : : : ;mdg/

C ln.1� �/� ; (3.133)

where � D 1C x0 is arbitrary. This scaling property yields

ˇaex.�I fx�g/ D m�1
2 A .�I f$3; : : : ;$dg/� ln.1��/ ; $k � mk

mk�1
2

; (3.134)

where A is so far an unknown function of d � 1 variables. In the two-dimensional
case (d D 2), A is a function of � only and, therefore, it is fixed by the one-
component free energy, namely A .�/ D ˇaex

oc.�/C ln.1 � �/, so that

ˇaex
SYH.�/ D m�1

2

�

ˇaex
oc.�/C ln.1 � �/� � ln.1� �/ ; .d D 2/ : (3.135)

This is fully equivalent to (3.126a) (hence the label SYH), this time obtained by
implementing the consistency condition (3.128a) on the truncatability ansatz (3.132)
for d D 2.

Thus far, we have not used the more stringent consistency condition (3.131)
yet. In order to apply it on (3.134) (for general d), we will need the mathematical
properties

1

vd�
d
0

@�0

@n0
D 1 ; (3.136a)

lim
x0!0;�0!1

1

vd�
d
0

@$ 0
k

@n0
D $d

�
ık;d ; .k � 3/ ; (3.136b)

lim
x0!0;�0!1

1

vd�
d
0

@m0
2

@n0
D m2

�
ıd;2 : (3.136c)

In the case d D 2, insertion of (3.134) into (3.131) gives the linear ordinary
differential equation

dA .�/

d�
D A .�/

�.1 � �/
; .d D 2/ ; (3.137)

whose solution is

A .�/ D �

1 � �
; .d D 2/ : (3.138)
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This completes the determination of the free energy and its associated compressibil-
ity factor:

ˇaex
SPT.�/ D m�1

2

�

1 � � � ln.1 � �/ ; .d D 2/ ; (3.139a)

ZSPT.�/ D 1

1 � �
C m�1

2

�

.1 � �/2 ; .d D 2/ : (3.139b)

This is not but the SPT for HD mixtures [101]. In fact, (3.139b) can be reobtained
from (3.126a) by injecting the SPT compressibility factor (3.111) for Zoc.�/. Thus,
we conclude that the only truncatable free energy density in two dimensions
consistent with the exact requirements (3.128a) and (3.131) is the SPT one.

On the other hand, if d � 3, combination of (3.134) and (3.131) yields a linear
partial differential equation:

�.1 � �/
@A

@�
C$d

@A

@$d
D 0 ; .d � 3/ : (3.140)

Its solution is

A .�I f$3; : : : ;$dg D A0

�

�

$d.1 � �/
I f$3; : : : ;$d�1g

�

; (3.141)

where A0 is a function of d � 2 variables that remains arbitrary, except for the one-
component constraint

A0


 �

1 � � I f1; : : : ; 1
„ ƒ‚ …

d � 3

g
�

D ˇaex
oc.�/C ln.1 � �/ : (3.142)

In the physically important three-dimensional case, A0 is fully determined from
ˇaex

oc, so that combining (3.134), (3.141), and (3.142) we obtain [117]

ˇaex
consist.�/C ln.1 � �/ D&p

&�

�

ˇaex
oc.�eff/C ln.1 � �eff/

�

;

�Zconsist.�/ � �

1 � �D&p

	

�effZoc.�eff/� �eff

1 � �eff

�

;

(3.143a)

(3.143b)

where the label “consist” stands for “consistent” [in the sense of (3.128a) and
(3.131)]. In (3.143), �eff and � are related by

�eff

1 � �eff
D &�1

�

�

1 � � ) �eff D
	

1C &�
1 � �

�

��1
; (3.144)
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where we have called

&� � m3

m2
2

; &p � m3

m3
2

; .d D 3/ : (3.145)

Note that the inequalities m3 � m2
2 � m2 � 1 [123] imply &p � &� � 1. Equation

(3.143b) can be equivalently written as

Zconsist.�/ D &p=&�

1 � .1 � &�1
� /�

Zoc.�eff/� &p=&� � 1

1 � � : (3.146)

Interestingly, using the SPT one-component EoS (3.115), one can obtain

ZSPT.�/ D 1

1 � �
C m2

m3

3�

.1 � �/2
C m3

2

m2
3

3�2

.1 � �/3
: .d D 3/ : (3.147)

As might be expected, this is precisely the SPT expression for three-dimensional
AHS mixtures [97, 101, 124–126].

To sum up, the enforcement of the conditions (3.128a) and (3.131) on trun-
catable free energies leads to the SPT EoS (3.139) for d D 2 and to the
simple one-component$multicomponent mapping (3.143) for d D 3. For higher
dimensionalities (d � 4), however, (3.142) is not sufficient to fix the function A0,
so that d � 3 additional conditions would in principle be needed.

3.9.3.4 Surplus Free Energy and Pressure

Equations (3.143) and (3.144) have an appealing physical interpretation [127], even
for arbitrary d. First, note that the ratio �=.1 � �/ represents a rescaled packing
fraction, i.e., the ratio between the volume NvdMd occupied by the spheres and
the void volume V � NvdMd. According to (3.144), the effective one-component
fluid associated with a given mixture has a rescaled packing fraction that is &�
times smaller than that of the mixture. Next, we can realize that �Z.�/ � �=.1� �/

represents a (reduced) modified excess pressure with respect to a modified ideal-gas
value corresponding to the void volume V � NvdMd, namely

	p� � ˇvdMd

	

p � NkBT

V � NvdMd

�

D �Z.�/ � �

1 � �
: (3.148)

To avoid confusion with the conventional excess pressure pex D p � NkBT=V ,
we will refer to the quantity 	p� as the surplus pressure. Analogously, we can
define the surplus Helmholtz free energy per particle 	a� � ˇaex.�/ C ln.1 � �/

as the difference between the Helmholtz free energy per particle (in units of kBT)
and the ideal-gas value corresponding to N particles occupying the void volume
V � NvdMd. In terms of those quantities, the approximation (3.143) establishes
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Fig. 3.23 Schematical view of the one-component$multicomponent mapping represented by
(3.143) and (3.144)

that the surplus free energy	a� and pressure 	p� of the multicomponent fluid are
just proportional to their respective one-component quantities 	a�

oc and 	p�
oc, as

schematically depicted in Fig. 3.23. The surplus free energy of the mixture is never
smaller than that of the effective one-component fluid, but the surplus pressure	p�
can be larger than, equal to, or smaller than	p�

oc since &p �1 has not a definite sign.
The free energy density obtained from (3.143a) has been extended to inhomoge-

neous systems [117, 128, 129] in the context of the fundamental-measure density
functional theory pioneered by Rosenfeld (see Fig. 3.24) [120, 130].

The physical interpretation of (3.143) and (3.144) suggests their generalization to
any dimensionality d ¤ 3. In that case, the parameters &� and &p are no longer given
by (3.145) but can be determined, in analogy with (3.118), by requiring consistency
with the second and third virial coefficients. This leads to

&� D Ob2 � 1

b2 � 1

b3 � 2b2 C 1

Ob3 � 2Ob2 C 1
; &p D

 Ob2 � 1

b2 � 1

!3 �
b3 � 2b2 C 1

Ob3 � 2Ob2 C 1

�2

: (3.149)

Since the third virial coefficient for d D odd can be expressed in terms of moments
of the size distribution [see (3.85)], it turns out that (3.149) implies a free energy
with a truncatable structure if d D odd. In particular, in the three-dimensional
case, use of (3.122b) and (3.124) shows that (3.149) reduces to (3.145). As an extra
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Fig. 3.24 Yaakov (Yasha)
Rosenfeld (1948–2002)
(Photograph from Wikimedia
Commons, https://upload.
wikimedia.org/wikipedia/en/
2/23/Yasha_Rosenfeld.jpg)

example, consider five-dimensional systems, in which case (3.69b) and (3.86d) yield

Ob2 D 1C 5
m4 C 2m2m3

m5

; .d D 5/ ; (3.150a)

Ob3 D 1C 10
m4 C 2m2m3

m5

C 25m4

m2m4 C 2m2
3

m2
5

; .d D 5/ ; (3.150b)

respectively. Consequently,

&� D m5

m4

m4 C 2m2m3

m2m4 C 2m2
3

D $5

$4

$4 C 2$3

$4 C 2$2
3

; .d D 5/ ; (3.151a)

&p D m5

3m2
4

.m4 C 2m2m3/
3

.m2m4 C 2m2
3/
2

D m�1
2

$5

3$2
4

.$4 C 2$3/
3

.$4 C 2$2
3 /
2
; .d D 5/ :

(3.151b)

From (3.143a) and (3.144) it is easy to check that the function A defined by (3.134)
has the structure (3.141), meaning that the requirement (3.131) is indeed fulfilled.
Therefore, for d D odd � 5, the prescription (3.143a) and (3.144), combined with
(3.149), avoids the need of d �3 extra conditions to fully determine the function A0

in (3.141).
In the case of d D even, however, the use of (3.149) in (3.143a) and (3.144) gives

a non-truncatable free energy, unless an approximation of the third virial coefficient
in terms of moments is introduced [70]. For instance, in the case of HD mixtures,
the accurate approximation (3.125) implies &� ' 1 and &p ' m�1

2 , so that (3.143b)
becomes equivalent to (3.126a).

Table 3.12 summarizes the different one-component$multicomponent map-
pings described in this section for generic d. The last row must be complemented
with (3.144) and (3.149).

https://upload.wikimedia.org/wikipedia/en/2/23/Yasha_Rosenfeld.jpg
https://upload.wikimedia.org/wikipedia/en/2/23/Yasha_Rosenfeld.jpg
https://upload.wikimedia.org/wikipedia/en/2/23/Yasha_Rosenfeld.jpg
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Table 3.12 Summary of different approximations for thermodynamic properties of AHS mixtures
in terms of one-component HS properties

Label ˇaex.�/ Z.�/

vdW ˇaex
oc.�Ob2=b2/ Zoc.�Ob2=b2/

SYH
Ob3 � Ob2
b3 � b2

ˇaex
oc.�/� b3 Ob2 � b2 Ob3

b3 � b2
ln.1� �/ 1C Ob3 � Ob2

b3 � b2
ŒZoc.�/� 1�

C b3 Ob2 � b2 Ob3
b3 � b2

�

1� �

BS ˇaex
oc.�/

 Ob2
b2

� b3 Ob2 � b2 Ob3
b22

�

!

1C ŒZoc.�/� 1�

 Ob2
b2

� b3 Ob2 � b2 Ob3
b22

�

!

C b3 Ob2 � b2 Ob3
b22

�

Z 1

0

dt ˇaex
oc.�t/

consist
&p

&�

�

ˇaex
oc.�eff/C ln.1� �eff/

�� ln.1� �/
&p=&�

1� .1� &�1
� /�

Zoc.�eff/� &p=&� � 1

1� �

3.9.3.5 Polydisperse Systems

Although along this section we have assumed a discrete distribution of sizes fx�g,
the results are readily generalized to a continuous distribution x.�/ (polydisperse
mixture). In the latter case, x.�/d� is the fraction of spheres having a diameter
comprised between � and � C d� . For instance, in a top-hat distribution,

x.�/ D 1

�max � �min

8

ˆ

ˆ

<

ˆ

ˆ

:

0 ; 0 < � < �min ;

1 ; �min < � < �max ;

0 ; � > �max :

(3.152)

In a continuous size distribution, the definition (3.70) for the moment Mk is
obviously replaced by

Mk D
Z 1

0

d� x.�/�k : (3.153)

For instance, in the case of the distribution (3.152), Mk D .�kC1
max � �kC1

min /=Œ.k C
1/.�max � �min/�. The knowledge of Mk (and hence of mk) is enough to obtain the
rescaled virial coefficients Ob2 for all d and Ob3 for d D odd. In general, combination
of (3.36b) and (3.78) yields

Ob3 D 2d�1

vdM2
d

Z 1

0

d�1

Z 1

0

d�2

Z 1

0

d�3 x.�1/x.�2/x.�3/�
d
12

NV�13;�23 .�12/ :
(3.154)

This triple integration must be used to strictly obtain Ob3 for d D even, unless a
moment approximation, like in (3.125), is employed.
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Fig. 3.25 Compressibility
factor for (a) a HD binary
mixture with x1 D x2 D 1

2
,

�2=�1 D 5
7
, and (b) a top-hat

HD polydisperse mixture
with �max=�min D 100. The
symbols correspond to
computer simulations [131],
while the solid lines
correspond to (3.126a)
complemented by (3.107) for
Zoc.�/. Use of (3.127a) gives
practically indistinguishable
results

Fig. 3.26 Compressibility
factor for (a) a HS binary
mixture with x1 D x2 D 1

2
,

�2=�1 D 10
13

, and (b) a top-hat
HS polydisperse mixture with
�max=�min D 100. The
symbols correspond to
computer simulations [127],
while the solid lines
correspond to (3.126b)
complemented by (3.113) for
Zoc.�/. Use of (3.127b) or
(3.146) gives practically
indistinguishable results

3.9.3.6 Comparison with Computer Simulations

As representative examples, let us consider an equimolar (x1 D x2 D 1
2
) binary

mixture with a size ratio �2=�1 D 5
7

(d D 2) and �2=�1 D 10
13

(d D 3) and a top-
hat continuous distribution with �max=�min D 100 (d D 2 and d D 3). Computer
simulations of those mixtures [127, 131] are compared with theoretical predictions
in Figs. 3.25 and 3.26 for d D 2 and d D 3, respectively.
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An excellent general agreement between simulation and theory can be observed,
although it tends to worsen at high packing fractions for the binary mixtures. We
also note that the influence of multicomposition is more important in the three-
dimensional case than in the two-dimensional one. Moreover, comparison with
Figs. 3.19 and 3.22 shows that higher packing fractions in the metastable region
can be reached in a mixture as compared to the one-component case. This is due to
the fact that the presence of different sizes tends to frustrate crystallization [132].

Before closing this chapter, it is worth saying that, despite the weight given
here to HS systems, some important topics such as inhomogeneous fluids and
density functional theory [122, 133–137], metastable glassy states [138–140], and
perturbation theories [3, 4] have been left out. The interested reader is referred to
the relevant literature for further details on those topics.

Exercises

3.1 What relationship exists between the Mayer functions for the PS and HS
potentials?

3.2 As an extension of both the PS and the SW potentials one can introduce a
penetrable square-well (PSW) potential. How would you define it? How many free
parameters (energy and length scales) would it include? Make a schematic graph
of the associated Mayer function. Compare your definition with that of Fantoni
et al. [141].

3.3 The PSW model can violate Ruelle’s stability criterion [142, 143]. Why? Hint:
Consult Fantoni et al. [141].

3.4 Download and install the Wolfram CDF Player (http://www.wolfram.com/cdf-
player) in your computer. Play with the Demonstration of Pajuelo and Santos [144]
to explore how the scattering angle depends on the impact parameter in (a) the HS,
(b) the PS, (c) the SW, and (d) the PSW interactions.

3.5 Derive (3.12).

3.6 Check (3.15).

3.7 Derive (3.18) and (3.19).

3.8 Derive (3.33).

3.9 Check the correctness of the numerical coefficient associated with each diagram
of Table 3.4.

3.10 Suppose that the SHS limit from the SW potential is taken as eˇ" 
 .� 0=� �
1/�k with k > 0, k ¤ 1, instead of as in (3.4). How would the corresponding Mayer
function look like? Would the associated second virial coefficient be different from
that of HSs? Would it be finite?

http://www.wolfram.com/cdf-player
http://www.wolfram.com/cdf-player
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3.11 Obtain the second virial coefficient for the PSW fluid defined in Exercise 3.2.

3.12 Derive (3.53).

3.13 Download and install the Wolfram CDF Player (http://www.wolfram.com/
cdf-player) in your computer. Play with the Demonstration of Santos [50] to explore
how the Boyle temperature and the maximum value of the second virial coefficient
for the generalized LJ potential change with the parameter s.

3.14 Download and install the Wolfram CDF Player (http://www.wolfram.com/
cdf-player) in your computer. Play with the Demonstration of Blinder [145] to
explore how the LJ interaction potential, the Boyle temperature, and the second
virial coefficient (all in real units) differ as the gas changes.

3.15 Derive (3.55) and (3.56).

3.16 Derive (3.61) and (3.62).

3.17 Assuming that Argon can be modeled by means of the LJ potential (3.52)
(s D 6) with � D 3:405Å and "=kB D 119:8K, plot the second virial coefficient
(see Table 3.6) B2.T/ (in cm3/mol) for the temperature range T D 80–1100K.
Compare with the empirical equation (5), Fig. 5, and Table 7 of Stewart and
Jacobsen [146].

3.18 Derive (3.66).

3.19 Check that (3.63) indeed leads to Table 3.7. Extend Table 3.7 to higher
values of d. Compare the obtained numerical values with those from the asymptotic
formula (3.66).

3.20 Check that (3.65) indeed leads to the exact values of Table 3.7 for d D odd.

3.21 Check that (3.65) with the approximation j.d/max ! 7 leads to the numerical
values of Table 3.7 for d D even.

3.22 Derive (3.74) and (3.75).

3.23 With the help of a computational software program, check that both sides of
(3.76) yield the same result for d D 1–12.

3.24 With the help of a computational software program, check that (3.75) and
(3.78) yield the same numerical results for different choices of �˛� , �˛ı , and ��ı in
the cases d D 2 [you need to use (3.82)], d D 3 [you need to use (3.81a)], and
d D 5 [you need to use (3.81b)].

3.25 Particularize the second line of (3.83) to d D 3 and 5 and check that the
obtained polynomials are consistent with (3.81).

3.26 Make a D b in (3.82) and expand NVa;a.r/ in powers of r. Check that the result
coincides with (3.83) particularized to d D 2.

3.27 Derive (3.86), and (3.87) by complementing (3.78) with (3.81) and (3.82),
respectively.

http://www.wolfram.com/cdf-player
http://www.wolfram.com/cdf-player
http://www.wolfram.com/cdf-player
http://www.wolfram.com/cdf-player
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3.28 Assuming, without loss of generality, that �˛ � �� � �ı � �% , derive (3.91)
from (3.90).

3.29 Derive (3.96) from (3.95).

3.30 Check that (3.98) reduces to (3.92) if �% D �˛ .

3.31 With the help of a computational software program, check (3.100).

3.32 Check from (3.103c) that the symmetry condition b2I2.q/ D q9b2I2.1=q/ is
satisfied.

3.33 Check that (3.103) is consistent with (3.47).

3.34 Download and install the Wolfram CDF Player (http://www.wolfram.com/
cdf-player) in your computer. Play with the Demonstration of Santos [147] to
explore how the second, third, and fourth virial coefficients of a binary three-
dimensional AHS mixture depend on the composition and size ratio of the mixture.

3.35 Check the numerical values of Table 3.11.

3.36 Prove from Fig. 3.18 that �cp D �
p
2=6 at close packing.

3.37 Obtain the first twelve virial coefficients for HDs obtained from (3.107),
(3.108), (3.110), and (3.111), and compare the results with the exact values of
Table 3.11.

3.38 Check that the EoS (3.110) presents an additional mathematical pole at � D
�cp=.2�cp � 1/ ' 1:114 4.

3.39 Check that a HD EoS alternative to (3.110) but yet complying with the
requirements (3.109) is

Z D 1C .2 � 1=�cp/�

1 � �=�cp
:

Does this EoS behave reasonably well? Obtain its first few virial coefficients.

3.40 Derive (3.113) by inserting the approximation (3.112) into the virial series
(3.104).

3.41 Derive (3.114).

3.42 Obtain the first twelve virial coefficients from the SPT EoS (3.115) and
compare with the results of Table 3.11.

3.43 Check that (3.118) and (3.120) are consistent with the first three virial
coefficients, i.e., Z.�/ D 1C Ob2�C Ob3�2 C � � � .

3.44 Derive (3.119) and (3.121).

http://www.wolfram.com/cdf-player
http://www.wolfram.com/cdf-player
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3.45 Prove that

lim
�0!0

QfN0;N1;N2;:::g D .1 � �/N0QfN1;N2;:::g ;

where QfN�g is the configuration integral of an AHS mixture [see (4.66) in Chap. 4
for its general definition]. From the above relation, derive (3.128).

3.46 Check (3.131).

3.47 Prove that (3.118) is consistent with (3.128b). Is also (3.120) consistent with
(3.128b)?

3.48 Prove (3.136).

3.49 Check (3.137) and (3.140).

3.50 Check that (3.141) satisfies (3.140).

3.51 Check (3.143). Hint: Upon deriving (3.143b) from (3.143a), take into account
that @�eff=@� D &�.�eff=�/

2.

3.52 Check (3.146) and (3.147).

3.53 Insert the SPT one-component EoS (3.115) into (3.126b). Does the result
coincide with the SPT EoS for mixtures (3.147)?

3.54 Check that insertion of (3.149) into (3.146) gives Z.�/ D 1 C Ob2�C Ob3�2 C
O.�4/.

3.55 Using (3.143a), (3.144), and (3.151) for d D 5, prove that the function A
defined by (3.134) has the structure (3.141).
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Chapter 4
Spatial Correlation Functions
and Thermodynamic Routes

This chapter introduces the reduced (or marginal) distribution functions describing
groups of s particles. The fundamental one is the pair configurational distribution
function, from which the radial distribution function g.r/ is defined as a key quantity
in the statistical-mechanical description of liquids. Most of the chapter is devoted
to the derivation of thermodynamic quantities in terms of integrals involving g.r/.
Apart from the conventional compressibility, energy, and virial routes, the less
known chemical-potential and free-energy routes are worked out.

4.1 Reduced Distribution Functions

The N-body probability distribution function �N.xN/ contains all the (equilibrium or
nonequilibrium) statistical-mechanical information about the system. On the other
hand, partial information embedded in marginal few-body distributions are usually
enough for the most relevant quantities. Moreover, it is much simpler to introduce
useful approximations at the level of the marginal distributions than at the N-body
level.

Let us introduce the s-body reduced distribution function fs.xs/ so that fs.xs/dxs

is the (average) number of groups of s particles such that one particle lies inside a
volume dx1 around the (one-body) phase-space point x1, other particle lies inside a
volume dx2 around the (one-body) phase-space point x2, . . . and so on (see Fig. 4.1
for s D 3). More explicitly,

fs.xs/ D
X

i1¤i2¤���¤is

Z

dx0N ı.x0
i1 � x1/ � � � ı.x0

is � xs/�N.x0N/

D NŠ

.N � s/Š

Z

dxsC1
Z

dxsC2 � � �
Z

dxN �N.xN/ : (4.1)
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Fig. 4.1 Sketch of the
one-body phase space. The
horizontal axis represents the
d position coordinates, while
the vertical axis represents
the d momentum
components. Three points (x1 ,
x2, and x3) are represented.
Compare with Fig. 2.1

In (4.1) it is implicitly assumed that the total number N of particles is fixed. If
that is not the case (for instance, in the grand canonical ensemble), the adequate
definition is

fs.xs/ D sŠ�s.xs/C
1
X

NDsC1

NŠ

.N � s/Š

Z

dxsC1
Z

dxsC2 � � �
Z

dxN �N.xN/ ; (4.2)

where the first term on the right-hand side is the contribution corresponding to
N D s.

In equilibrium situations, momenta are uncorrelated and thus the relevant
information is contained in the s-body configurational distribution functions

ns.rs/ D
Z

dps fs.xs/ : (4.3)

Obviously, the normalization conditions of fs.xs/ and ns.rs/ are

Z

dxs fs.xs/ D
Z

drs ns.rs/ D
�

NŠ

.N � s/Š

�

; (4.4)

where the angular brackets are unnecessary if N is fixed.
The relevance of ns arises especially when one is interested in evaluating the

average of a dynamical variable that can be expressed in terms of s-body functions,
namely

A.rN/ D 1

sŠ

X

i1¤i2¤���¤is

As.ri1 ; ri2 ; : : : ; ris/ : (4.5)

In that case, it is easy to obtain

hAi �
1
X

NDs

Z

dxN A.rN/�N.xN/ D 1

sŠ

Z

drs As.rs/ns.rs/ : (4.6)
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Needless to say, the summation
P1

NDs is only needed if the number of particles in
the system is not fixed

The quantities (4.1) and (4.3) can be defined both out of and in equilibrium.
In the latter case, however, we can benefit from the (formal) knowledge of �N . In
particular, in the canonical [see (2.17) and (2.64)] and grand canonical [see (2.31)
and (2.67)] ensembles one has

ns.rs/ D 1

VNQN

NŠ

.N � s/Š

Z

drsC1 � � �
Z

drN e�ˇ˚N .rN / ; (4.7a)

ns.rs/ D 1

�

1
X

NDs

OzN

.N � s/Š

Z

drsC1 � � �
Z

drN e�ˇ˚N .rN / ; (4.7b)

respectively. We recall that the rescaled fugacity Oz is defined in (2.68). Note that,
because of the translational invariance property (2.62), n1 D n, where n � hNi=V
is the number density. More in general, the functions ns are translationally invariant,
namely

ns.r1 C a; r2 C a; : : : ; rs C a/ D ns.r1; r2; : : : ; rs/ : (4.8)

The grand-canonical expression (4.7b) allows us to establish an important
relationship between ns, @ns=@z, and an integral of nsC1. First, note that

z
@ns.rs/

@z
D � hNi ns.rs/C 1

�

1
X

NDs

NOzN

.N � s/Š

Z

drsC1 � � �
Z

drN e�ˇ˚N .rN / ; (4.9)

where use has been made of the thermodynamic relation hNi D z@ ln�=@z [see
(2.36b)]. Next, replacing the factor N by s C N � s inside the summation of the
second term, we obtain

�

z
@

@z
� s

�

ns.rs/ D
Z

drsC1
�

nsC1.rsC1/ � nns.rs/
�

: (4.10)

Noting the chain of identities

z
@

@z
D kBT

@

@�
D kBT

@p

@�

@n

@p

@

@n
D �T n

@

@n
; (4.11)

where in the last step use has been made of (1.22), (1.28), and (1.34), we can rewrite
(4.10) as

�

�T n
@

@n
� s

�

ns.rs/ D
Z

drsC1
�

nsC1.rsC1/ � nns.rs/
�

: (4.12)
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The exact relation (4.12) was derived by Baxter (see Fig. 3.4) by a different method
[1]. It can also be derived from the canonical representation (4.7a).

4.2 Correlation Functions

In the absence of interactions (˚N D 0),

nid
s D 1

Vs

�

NŠ

.N � s/Š

�

� ns ; (4.13)

where the thermodynamic limit has been applied (assuming s 	 hNi) in the second
step. Again, the angular brackets involving functions of N are not needed in the
canonical ensemble.

In general, the existence of interactions (˚N ¤ 0) creates spatial correlations and,
consequently, ns ¤ ns (except, of course, in the trivial case s D 1). This suggest the
introduction of the correlation functions gs by

ns.rs/ D nsgs.rs/ : (4.14)

Thus, according to (4.7a),

gs.rs/ D V�.N�s/

QN

Z

drsC1 � � �
Z

drN e�ˇ˚N .rN / (4.15)

in the canonical ensemble.
An interesting normalization relation holds in the grand canonical ensemble.

Inserting (4.14) into (4.4) we get

V�s
Z

drs gs.rs/ D 1

hNis

�

NŠ

.N � s/Š

�

: (4.16)

In analogy with (3.18), we can define the cluster correlation functions hs.rs/

by [2]

g1.1/ D h1.1/ D 1 ; (4.17a)

g2.1; 2/ D h1.1/h1.2/C h2.1; 2/ ; (4.17b)

g3.1; 2; 3/ D h1.1/h1.2/h1.3/C f3gh1.1/h2.2; 3/C h3.1; 2; 3/ ; (4.17c)

g4.1; 2; 3; 4/ D h1.1/h1.2/h1.3/h1.4/C f6gh1.1/h1.2/h2.3; 4/

Cf3gh2.1; 2/h2.3; 4/C f4gh1.1/h3.2; 3; 4/C h4.1; 2; 3; 4/ ;

(4.17d)
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and so on, where we recall that each numerical factor enclosed by curly braces
represents the number of terms equivalent (except for particle labeling) to the
indicated canonical term. More in general, the functions fhsg and fgsg are formally
related by

1C
1
X

sD1

%s

sŠ
gs $ exp

" 1
X

sD1

%s

sŠ
hs

#

; (4.18)

where % is a formal expansion parameter. Expressed in terms of the cluster
correlation functions, the hierarchy (4.12) becomes [1]

�

�Tn
@

@n
� s

�

nshs.rs/ D nsC1
Z

drsC1 hsC1.rsC1/ : (4.19)

4.3 Radial Distribution Function

If the potential energy function ˚N.rN/ is assumed to be pairwise additive [see
(3.1)], the basic correlation function is g2. Now, taking into account the translational
invariance property (4.8), one has g2.r1; r2/ D g.r1 � r2/. Moreover, a fluid is
rotationally invariant, so that (assuming central forces), g.r1 � r2/ D g.r12/, where
r12 � jr1 � r2j is the distance between the points r1 and r2. In such a case,
the function g.r/ is called radial distribution function (RDF) and will play a very
important role henceforth. According to (4.15),

g.r12/ D V�.N�2/

QN

Z

dr3 � � �
Z

drN e�ˇ˚N .rN / (4.20)

in the canonical ensemble. Also, the grand-canonical normalization condition (4.16)
becomes

V�1
Z

dr g.r/ D hN.N � 1/i
hNi2 D

˝

N2
˛

hNi2 � 1

hNi : (4.21)

In the thermodynamic limit (hNi ! 1 and V ! 1 with n D const), we know that
˝

N2
˛

=hNi2 ! 1 [see (2.40)] (except near the critical point, where �T diverges).
This implies that V�1 R dr g.r/ � 1, meaning that g.r/ � 1 for macroscopic
distances r, which are those dominating the value of the integral. In other words,
R

dr Œg.r/� 1� 	 V .
Apart from the formal definition provided by (4.14) and (4.20), it is important

to have a more intuitive physical interpretation of g.r/. Two simple equivalent
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Fig. 4.2 Schematic view of
how g.r/ is determined. The
central (red) particle is the
reference one, while the dark
(blue) peripheral particles are
those whose centers are at a
distance between r and
r C dr. The average number
of those particles, divided by
n4�r2dr (in three
dimensions) or by n2�rdr (in
two dimensions), gives g.r/
(Image from Wikimedia
Commons, http://commons.
wikimedia.org/wiki/File:Rdf_
schematic.jpg)

interpretations are:

• g.r/ is the probability density of finding a particle at a distance r away
from a given reference particle, relative to the probability density for an
ideal gas.

• If a given reference particle is taken to be at the origin, then the local
average density at a distance r from that particle is ng.r/.

Figure 4.2 illustrates the meaning of g.r/ and how this quantity can be measured
in MC or MD computer simulations [3, 4].

The typical shape of the RDF for (three-dimensional) fluids of particles interact-
ing via the LJ and HS potentials (see Table 3.1) is displayed in Figs. 4.3 and 4.4,
respectively. As we see in Fig. 4.3, g.r/ is practically zero in the region 0 � r . �

(due to the strongly repulsive force exerted by the reference particle at those
distances), presents a peak at r � � , oscillates thereafter, and eventually tends to
unity for longer distances. Those features are enhanced as the density increases.
A similar behavior is observed in Fig. 4.4, except that now g.r/ presents a jump
discontinuity at r D � as a consequence of the absolute impenetrability of two
particles separated a distance smaller that � . In general, we observe that the RDF
captures an interesting structure exhibited by liquids.

It is useful to define some functions related to the RDF g.r/. The first one is
simply the pair cluster correlation function h2.r1; r2/ D h.r12/ [see (4.17b)], i.e.,

h.r/ D g.r/� 1 ; (4.22)

http://commons.wikimedia.org/wiki/File:Rdf_schematic.jpg
http://commons.wikimedia.org/wiki/File:Rdf_schematic.jpg
http://commons.wikimedia.org/wiki/File:Rdf_schematic.jpg
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Fig. 4.3 Plot of g.r/ for a LJ
fluid simulated with MD at a
reduced temperature
T� � kBT=" D 2:0 and
reduced number densities
n� � n�3 D 0:2, 0:4, 0:6,
and 0:7 [5]

Fig. 4.4 Plot of g.r/ for a HS
fluid simulated with MD at
reduced number densities
n� � n�3 D 0:2, 0:4, 0:6,
and 0:9 [6]

usually denoted as the total correlation function. Its Fourier transform

Qh.k/ �
Z

dr e�ik�rh.r/ (4.23)

is directly connected to the (static) structure factor:

eS.k/ D 1C nQh.k/ : (4.24)
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Fig. 4.5 Cavity function in
the overlapping region r < �
for a HS fluid at three
different densities, as
obtained from MC
simulations [7]

The structure factor is a very important quantity because it is experimentally
accessible by elastic scattering of radiation (x-rays or neutrons) by the fluid [8, 9].
Thus, while g.r/ can be measured directly in simulations (either MC or MD)
[3, 4, 10], it can be obtained indirectly in experiments from a numerical inverse
Fourier transform ofeS.k/ � 1.

Another important quantity closely related to the RDF is the so-called cavity
function

y.r/ � g.r/eˇ�.r/ : (4.25)

This is a much more regular function than the RDF g.r/. As we will see in Sect. 6.5,
it is continuous even if the interaction potential is discontinuous or diverges. In the
HS case, for instance, while g.r/ D 0 if r < � (see Fig. 4.4), y.r/ is well defined in
that region, as illustrated by Fig. 4.5.

4.4 Ornstein–Zernike Relation and the Direct Correlation
Function

The total correlation function (4.22) owes its name to the fact that it measures
the degree of spatial correlation between two particles separated a distance r due
not only to their direct interaction but also indirectly through other intermediate
or “messenger” particles. In fact, the range of h.r/ is usually much larger than
that of the potential �.r/ itself, as illustrated by Figs. 4.3 and 4.4. In fluids with
a vapor–liquid phase transition, h.r/ decays algebraically at the critical point, so
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Fig. 4.6 Leonard Salomon
Ornstein (1880–1941)
(Photograph reproduced with
permission from AIP Emilio
Segrè Visual Archives, W. F.
Meggers Collection, https://
photos.aip.org/history-
programs/niels-bohr-library/
photos/ornstein-leonard-b1)

Fig. 4.7 Frits Zernike
(1888–1966)
(Photograph from Wikimedia
Commons, http://en.
wikipedia.org/wiki/File:
Zernike.jpg)

that the integral Qh.0/ D R

dr h.r/ diverges and so does the isothermal compress-
ibility �T [see (4.29) in Sect. 4.5], a phenomenon known as critical opalescence
[8, 9].

It is then important to disentangle from h.r/ its direct and indirect contributions.
This aim was addressed in 1914 by the Dutch physicists L.S. Ornstein (see Fig. 4.6)
and F. Zernike (see Fig. 4.7). They defined the direct correlation function (DCF)
c.r/ by the integral relation

h.r12/ D c.r12/C n
Z

dr3 c.r13/h.r32/ : (4.26)

The idea behind the Ornstein–Zernike (OZ) relation (4.26) is sketched in Fig. 4.8:
the total correlation function h12 between particles 1 and 2 can be decomposed into

https://photos.aip.org/history-programs/niels-bohr-library/photos/ornstein-leonard-b1
https://photos.aip.org/history-programs/niels-bohr-library/photos/ornstein-leonard-b1
https://photos.aip.org/history-programs/niels-bohr-library/photos/ornstein-leonard-b1
https://photos.aip.org/history-programs/niels-bohr-library/photos/ornstein-leonard-b1
http://en.wikipedia.org/wiki/File:Zernike.jpg
http://en.wikipedia.org/wiki/File:Zernike.jpg
http://en.wikipedia.org/wiki/File:Zernike.jpg
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TOTAL: h12

1 2 = +

TOTAL: h
32

1 2

direct: c12

1 2

3

di
re
ct
: c

13

Fig. 4.8 Sketch of the meaning of the OZ relation (4.26)

the DCF c12 plus the indirect part, the latter being mediated by a messenger particle
3 that is directly correlated to 1 and totally correlated to 2.

Thanks to the convolution structure of the indirect part, the OZ relation (4.26)
becomes Qh.k/ D Qc.k/C nQc.k/Qh.k/ in Fourier space or, equivalently,

Qh.k/ D Qc.k/
1 � nQc.k/ ; Qc.k/ D

Qh.k/
1C nQh.k/ : (4.27)

Thus, the relationship (4.24) can also be written as

eS.k/ D 1

1 � nQc.k/ : (4.28)

4.5 Thermodynamics from the Radial Distribution Function

As shown by (2.12), (2.21), (2.35), and (2.50) (see also Table 2.1), the knowledge of
any of the ensemble partition functions allows one to obtain the full thermodynamic
information about the system. But now imagine that instead of the partition function
(for instance, the canonical one), we are given (from experimental measurements,
computer simulations, or a certain theory) the RDF g.r/. Can we have access to
thermodynamics directly from g.r/? As we will see in this section, the answer is
affirmative in the case of pairwise interactions.

4.5.1 Compressibility Route

The most straightforward route to thermodynamics from g.r/ is provided by
choosing the grand canonical ensemble and simply combining (2.40) and (4.21)
to obtain

�T � nkBT�T D kBT

�

@n

@p

�

T

D 1C n
Z

dr h.r/ DeS.0/ ; (4.29)
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where in the last step use has been made of (4.24). Therefore, the zero wavenumber
limit of the structure factor is directly related to the isothermal compressibility.
Equation (4.29) is usually known as the compressibility EoS or the compressibility
route to thermodynamics.

Using (4.28), the compressibility route to the EoS (4.29) can be rewritten as

�T D 1

1 � nQc.0/ : (4.30)

Therefore, even if Qh.0/ ! 1 (at the critical point), Qc.0/ ! n�1 D finite, thus
showing that c.r/ is much shorter ranged than h.r/, as expected.

It must be noticed that (4.29) applies regardless of the specific form of the
potential energy function ˚N.rN/ (whether pairwise additive or not) and can be
recovered as the first equation (s D 1) of the hierarchy (4.19).

4.5.2 Energy Route

From now on we assume that the interaction is pairwise additive, as given by (3.1).
This implies that ˚N is a dynamical variable of the form (4.5) with s D 2. As a
consequence, we can apply the property (4.6) to the average potential energy:

hEiex D ˝

˚N.rN/
˛ D 1

2

Z

dr1

Z

dr2 n2.r1; r2/�.r12/ : (4.31)

Adding the ideal-gas term hEiid (see Table 2.2) and taking into account (4.14), we
finally obtain

hEi D N

	

d

2
kBT C n

2

Z

dr�.r/g.r/
�

; (4.32)

where we have used the general property
R

dr1
R

dr2F .r12/ D V
R

drF .r/, F .r/
being an arbitrary function.

Equation (4.32) defines the energy route to thermodynamics. It can be equiva-
lently written in terms of the cavity function (4.25) as

hEi D N

	

d

2
kBT C n

2

Z

dr�.r/e�ˇ�.r/y.r/
�

: (4.33)
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4.5.3 Virial Route

Now we consider the pressure, which is the quantity more directly related to the
EoS. In the canonical ensemble, the excess pressure is proportional to @ lnQN=@V
[see (2.65c)] and thus it is not the average of a dynamical variable of type (4.6). To
make things worse, the volume V appears in the configuration integral [see (2.64)]
both explicitly and implicitly through the integration limits. Let us make this more
evident by writing

QN.V/ D V�N
Z

VN
drN e�ˇ˚N .rN / : (4.34)

To get rid of this difficulty, we imagine now that the system is a sphere of volume
V and the origin of coordinates is chosen at the center of the sphere. If the whole
system is blown up by a factor � [8], the volume changes from V to �dV and the
configuration integral changes from QN.V/ to QN.�

dV/ with

QN.�
dV/ D .�dV/�N

Z

.�dV/N
drN e�ˇ˚N .rN / D V�N

Z

VN
dr0N e�ˇ˚N .�

N r0N
/ ;

(4.35)

where in the last step the change ri ! r0
i D ri=� has been performed. We see that

QN.�
dV/ depends on � explicitly through the argument of the interaction potential.

Next, taking into account the identity

@ lnQN.�
dV/

@V
D �

Vd

@ lnQN.�
dV/

@�
; (4.36)

we can write

@ lnQN.V/

@V
D 1

Vd

@ lnQN.�
dV/

@�

ˇ

ˇ

ˇ

ˇ

�D1
; (4.37)

so that

@ lnQN.�
dV/

@�

ˇ

ˇ

ˇ

ˇ

�D1
D �ˇ

�

@˚N.�
NrN/

@�

ˇ

ˇ

ˇ

ˇ

�D1

�

D �ˇ
2

Z

dr1

Z

dr2 n2.r1; r2/
@�.�r12/

@�

ˇ

ˇ

ˇ

ˇ

�D1

D �ˇ
2

n2V
Z

dr g.r/
@�.�r/

@�

ˇ

ˇ

ˇ

ˇ

�D1
: (4.38)
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In the second equality use has been made of (4.6) with s D 2. Finally, a
mathematical property similar to (4.37) is

@�.�r/

@�

ˇ

ˇ

ˇ

ˇ

�D1
D r

d�.r/

dr
: (4.39)

Inserting (4.39) into (4.38), and using (4.37), we obtain the sought result:

Z � p

nkBT
D 1 � nˇ

2d

Z

dr r
d�.r/

dr
g.r/ : (4.40)

This is known as the pressure route or virial route to the EoS, where we recall that Z
is the compressibility factor [see (1.35)]. Expressed in terms of the cavity function
(4.25), the virial route becomes

Z � p

nkBT
D 1C n

2d

Z

dr y.r/r
@f .r/

@r
; (4.41)

where we recall that the Mayer function is defined in (3.3).

4.5.4 Chemical-Potential Route

A look at (2.65b) and (2.65c) shows that we have already succeeded in expressing
the first two derivatives of lnQN in terms of integrals involving the RDF. The third
derivative yields the chemical potential and is much more delicate. First, noting that
N is actually a discrete variable, we can rewrite (2.65d) as

ˇ�ex D �@ lnQN

@N
! � ln

QNC1.ˇ;V/
QN.ˇ;V/

: (4.42)

Thus, the (excess) chemical potential is related to the response of the system to the
addition of one more particle without changing either temperature or volume.

The N-body potential energy is expressed by (3.1). Now we add an extra particle
(labeled as i D 0), so that the .N C 1/-body potential energy becomes

˚NC1.rNC1/ D
N�1
X

iD1

N
X

jDiC1
�.rij/C

N
X

jD1
�.r0j/ : (4.43)

Making use of (2.64), (2.66), and the translational invariance property (2.62), it turns
out that (4.42) can be rewritten as

ˇ�ex D � ln
D

e�ˇPN
jD1 �.r0j/

E

: (4.44)
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Fig. 4.9 Benjamin Widom
(b. 1927)
(Photograph reproduced with
permission from Cornell
Chronicle, http://www.news.
cornell.edu/stories/2005/11/
molecular-physics-journal-
pays-tribute-benjamin-
widom)

This represents the insertion method introduced by Widom (see Fig. 4.9) in 1963
[11].

Our goal now is to derive an expression for the chemical potential in terms of
the RDF. The trick consists in inserting the extra particle (the “solute”) little by
little through a charging process [8, 12–18]. We do so by introducing a coupling
parameter � such that its value 0 � � � 1 controls the strength of the interaction of
particle i D 0 to the rest of particles (the “solvent”):

�.�/.r/ D
(

0 ; � D 0 ;

�.r/ ; � D 1 :
(4.45)

The associated total potential energy and configuration integral are

˚
.�/
NC1.r

NC1/ D ˚N.rN/C
N
X

jD1
�.�/.r0j/ ; (4.46a)

Q
.�/
NC1.ˇ;V/ D V�.NC1/

Z

drNC1 e�ˇ˚.�/NC1.r
NC1/ : (4.46b)

Thus, assuming that Q.�/
NC1 is a smooth function of �, (4.42) becomes

ˇ�ex D �
Z 1

0

d�
@ lnQ.�/

NC1.ˇ;V/
@�

: (4.47)

Since the dependence of Q.�/
NC1 on � takes place through the extra summation in

(4.46a) and all the solvent particles are assumed to be identical, then

@ lnQ.�/
NC1

@�
D �nˇV�N

Q.�/
NC1

Z

drNC1 e�ˇ˚.�/NC1.r
NC1/ @�

.�/.r01/

@�
: (4.48)

http://www.news.cornell.edu/stories/2005/11/molecular-physics-journal-pays-tribute-benjamin-widom
http://www.news.cornell.edu/stories/2005/11/molecular-physics-journal-pays-tribute-benjamin-widom
http://www.news.cornell.edu/stories/2005/11/molecular-physics-journal-pays-tribute-benjamin-widom
http://www.news.cornell.edu/stories/2005/11/molecular-physics-journal-pays-tribute-benjamin-widom
http://www.news.cornell.edu/stories/2005/11/molecular-physics-journal-pays-tribute-benjamin-widom
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Now we realize that, similarly to (4.20), the solute–solvent RDF is defined as

g.�/01 .r01/ D V�.N�1/

Q
.�/
NC1

Z

dr2 � � �
Z

drN e�ˇ˚.�/NC1
.rNC1/ : (4.49)

This allows us to rewrite (4.48) in the form

@ lnQ.�/
NC1

@�
D �nˇ

V

Z

dr0

Z

dr1
@�.�/.r01/

@�
g.�/01 .r01/ : (4.50)

Finally, after taking into account that �id D kBT ln
�

nƒd
�

(see Table 2.2), (4.47)
yields

� D kBT ln
�

nƒd
�C n

Z 1

0

d�
Z

dr
@�.�/.r/

@�
g.�/01 .r/ ; (4.51)

or, equivalently,

ˇ� D ln
�

nƒd
� � n

Z 1

0

d�
Z

dr
@e�ˇ�.�/.r/

@�
y.�/01 .r/ ; (4.52)

where the cavity function is y.�/01 .r/ D g.�/01 .r/e
ˇ�.�/.r/.

In contrast to the other three conventional routes [see (4.29), (4.32), and (4.40)],
the chemical-potential route (4.51) requires the knowledge of the solute–solvent
correlation functions for all the values 0 � � � 1 of the coupling parameter �.

4.5.5 A Master Route: The Free Energy

The formulas relating the isothermal compressibility, the internal energy, the
pressure, and the chemical potential to the RDF are summarized in Table 4.1. The
thermodynamic relation between the quantities in the second column and the free
energy are given in the third column [see (1.36)].

In principle, the excess free energy can be obtained by integration from any of
those routes. The corresponding expressions are displayed in the first four rows of
Table 4.2, where it has been taken into account that the fluid behaves as an ideal gas
in the limits of zero density and/or infinite temperature. The latter limit assumes that
the interaction potential is finite at nonzero distances, what includes the LJ potential
but discards the HS, SW, SS, and SHS potentials of Table 3.1. In the latter cases, one
needs to add the HS excess free energy per particle to the energy-route expression
of Table 4.2.

The question we now may ask is, can we derive a more direct relationship
between the free energy and the RDF? To address this question we proceed in a



112 4 Spatial Correlation Functions and Thermodynamic Routes

Table 4.1 Summary of the main thermodynamic routes in a one-component system

Route Quantity Thermodynamic relation Expression

Compressibility
�T

�

@

@n
n2
@.ˇa/

@n

��1

ˇ

1C n

Z

dr h.r/

Energy
uex

�

@.ˇaex/

@ˇ

�

n

n

2

Z

dr�.r/g.r/

Virial
Z � 1 n

�

@.ˇaex/

@n

�

ˇ

� nˇ

2d

Z

dr r
d�.r/

dr
g.r/

Chemical potential
�ex

�

@.naex/

@n

�

ˇ

n

Z 1

0

d�

Z

dr
@�.�/.r/

@�
g.�/01 .r/

Here, aex D Fex=N is the excess Helmholtz free energy per particle and uex D hEiex
=N is the

excess internal energy per particle

Table 4.2 Expressions of the excess Helmholtz free energy per particle (in units of the thermal
energy) as a function of n and ˇ from different thermodynamic routes

Route Expression of ˇaex

Compressibility �
Z n

0

dn0

n02

Z n0

0

dn00 n00
R

dr h.rI n00; ˇ/

1C n00
R

dr h.rI n00 ; ˇ/

Energy n

2

Z ˇ

0

dˇ0

Z

dr�.r/g.rI n; ˇ0/

Virial � ˇ

2d

Z n

0

dn0

Z

dr r
d�.r/

dr
g.rI n0; ˇ/

Chemical potential ˇ

n

Z n

0

dn0 n0

Z 1

0

d�
Z

dr
@�.�/.r/

@�
g.�/01 .rI n0; ˇ/

Free energy nˇ

2

Z 1

0

d�

Z

dr
@�.�/.r/

@�
g.�/.rI n; ˇ/

way similar to the one followed for the derivation of the chemical-potential route,
except that now the charging process affects all the particles of the system and not
only a “solute” particle. Thus, the N-body potential energy function is

˚
.�/
N .rN/ D

X

1�i<j�N

�.�/.rij/ ; (4.53)

where �.�/.r/ is still defined by (4.45). The associated configuration integral and
RDF are

Q.�/
N .ˇ;V/ D V�N

Z

drN e�ˇ˚.�/N .rN / ; (4.54a)
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g.�/.r12/ D V�.N�2/

Q
.�/
N

Z

dr3 � � �
Z

drN e�ˇ˚.�/N .rN / : (4.54b)

Then, the free energy of the true system can be obtained as

Fex D �kBT lnQN D �kBT
Z 1

0

d�
@ lnQ.�/

N

@�
: (4.55)

Finally, by using (4.53) and (4.54) one easily obtains

aex D Fex

N
D n

2

Z 1

0

d�
Z

dr
@�.�/.r/

@�
g.�/.r/ : (4.56)

In terms of the cavity function,

ˇaex D �n

2

Z 1

0

d�
Z

dr
@e�ˇ�.�/.r/

@�
y.�/.r/ : (4.57)

Equation (4.56) or, equivalently, (4.57) can be considered as an alternative “free-
energy” route and is included in Table 4.2 for comparison with the other four routes.
In all the cases we observe that the knowledge of the RDF at the state point .n; ˇ/
of interest (and with the full interaction potential) is not enough to obtain the excess
free energy at that very point. This situation is sketched in Fig. 4.10. In the virial and
compressibility routes one needs to know the RDF at all smaller densities (n0 < n),
while the knowledge of the RDF at higher temperatures (ˇ0 < ˇ) is required in the
energy route. In the free-energy route the density and temperature do not change

Fig. 4.10 Sketch of the
points in the .n0; ˇ0; �/ space
where the RDF needs to be
known in order to evaluate
the free energy according to
different thermodynamic
routes. The bullet at the point
.n0=n; ˇ0=ˇ; �/ D .1; 1; 1/

represents the state of interest

0

1

0

1

0

1

'/

n'/n

En
er

gy
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but, in contrast, the pertinent piece of information is the RDF for intermediate
systems where the particle interactions are progressively switched on, the �-protocol
followed to go from the ideal gas to the full interacting system being arbitrary. This
protocol-dependent charging process (but only for one solute particle) is also present
in the chemical-potential route, where, in addition, systems with n0 < n need to be
considered.

The free-energy route (4.56) can be seen as a master route in the sense that
it includes the energy and virial routes as particular cases related to two specific
choices for the protocol �.�/.r/.

As a first specific choice, let us take

�.�/.r/ D ��.r/ ; (4.58)

where it is assumed that �.r/ D finite for all r > 0. This protocol is equivalent to
an energy rescaling. As a consequence, on physical grounds,

g.�/.rI n; ˇ/ D g.rI n; ˇ�/ : (4.59)

Consequently, the free-energy route (4.56) reduces to

aex D n

2

Z 1

0

d�
Z

dr�.r/g.rI n; ˇ�/ : (4.60)

Comparison with the second row of Table 4.2 shows that (4.60) coincides indeed
with the energy-route expression.

The second choice consists in the protocol

�.�/.r/ D �.r=�/ ; (4.61)

where it is assumed that limr!1 �.r/ D 0. This is equivalent to a distance rescaling
or blowing up of the system. Therefore, one must have

g.�/.rI n; ˇ/ D g.r=�I n�d; ˇ/ : (4.62)

Moreover,

@�.�/.r/

@�
D � r

�2
d�.r=�/

d.r=�/
: (4.63)

Thus, (4.56) becomes

aex D �n

2

Z 1

0

d�
Z

dr
r

�2
d�.r=�/

d.r=�/
g.r=�I n�d; ˇ/
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D �n

2

Z 1

0

d� �d�1
Z

dr r
d�.r/

dr
g.rI n�d; ˇ/ : (4.64)

Finally, a change of variables � ! n�d makes (4.64) coincide with the virial-route
expression in Table 4.2.

4.6 Extension to Mixtures

As mentioned before [see, for instance, (1.2), (1.3), and (3.6)], the main quantities
in a mixture or multicomponent system are

• Number of particles of species ˛: N˛ .
• Total number of particles: N D

X

˛

N˛ .

• Mole fraction of species ˛: x˛ D N˛
N
;

X

˛

x˛ D 1 .

• Number density of species ˛: n˛ D N˛
V

.

• Total number density: n D N

V
D
X

˛

n˛ .

Assuming again pairwise additivity and denoting by �˛�.r/ the interaction
potential between a particle of species ˛ and a particle of species � [see (3.7) for the
HS case], the total potential energy can be written as

˚fN�g.rN/ D
N�1
X

iD1

N
X

jDiC1
�#i#j.rij/ D 1

2

X

i¤j

�#i#j.rij/ ; (4.65)

where the label #i denotes the species to which particle i belongs. The corresponding
configuration integral is

QfN�g.ˇ;V/ D V�N
Z

drN e�ˇ˚fN� g.rN / : (4.66)

In analogy with the one-component case, the pair configurational distribution
function n˛� is defined as

n˛� .r˛; r� / D
*

X

i¤j

ı#i;˛ı#j;� ı.ri � r˛/ı.rj � r� /

+

; (4.67)
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where the Kronecker and Dirac deltas select those particles of species ˛ and � sitting
at r˛ and r� , respectively. Its normalization condition is then

Z

dr˛

Z

dr� n˛� .r˛; r� / D ˝

N˛
�

N� � ı˛�
�˛

: (4.68)

In particular, the canonical-ensemble expression is

n˛� .r˛; r� / D N˛
�

N� � ı˛�
�

VNQfN�g

Z

drN e�ˇ˚fN� g.rN /ı.r1 � r˛/ı.r2 � r� / ; (4.69)

where, without loss of generality, particles i D 1 and j D 2 have been assumed to
belong to species ˛ and � , respectively. The RDF for the pair ˛� , g˛� .r/, is defined
by

n˛� .r˛; r� / D n˛n�g˛� .r˛� / : (4.70)

Inserting (4.70) into (4.69), we obtain

g˛� .r12/ D V�.N�2/

QfN�g

Z

dr3 � � �
Z

drN e�ˇ˚fN� g.rN / : (4.71)

In the grand canonical ensemble, the normalization condition (4.68) implies

V�1
Z

dr g˛�.r/ D
˝

N˛N�
˛

hN˛i ˝N�
˛ � ı˛�

hN˛i : (4.72)

Equations (4.69)–(4.72) are the multicomponent equivalents of (4.7a), (4.14),
(4.20), and (4.21), respectively.

The physical meaning of g˛� .r/ is still captured by Fig. 4.2, except that now
the central particle must belong to species ˛ and, out of all the spheres at a
distance between r and r C dr, only those belonging to species � are considered.
Since g˛� .r/ D g�˛.r/, the same result is obtained if the central particle belongs
to � and only ˛ particles between r and r C dr are taken. Stated in simple
terms,

• g˛� .r/ is the probability density of finding a particle of species � at a
distance r away from a given reference particle of species ˛, relative to
the probability density for an ideal gas.

• If a given reference particle of species ˛ is taken to be at the origin, then
the local average density of species � at a distance r from that particle is
n�g˛� .r/.
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Fig. 4.11 John Gamble
Kirkwood (1907–1959)
(Photograph by C. T.
Alburtus, Yale University
News Bureau, courtesy of
AIP Emilio Segrè Visual
Archives, https://photos.aip.
org/history-programs/niels-
bohr-library/photos/
kirkwood-john-a2)

As in the one-component case, it is convenient to introduce the total correlation
function and the cavity function as

h˛� .r/ D g˛� .r/ � 1 ; (4.73a)

y˛� .r/ D g˛� .r/e
ˇ�˛� .r/ : (4.73b)

Also, the generalization to mixtures of the (static) structure factor (4.24) is [9]

eS˛� .k/ D x˛ı˛� C nx˛x� Qh˛� .k/ ; (4.74)

where Qh˛� .k/ is the Fourier transform of h˛� .r/ [see (4.23)]. The zero wavenumber
limit of Qh˛� .k/, i.e., Qh˛� .0/ D R

dr h˛� .r/, is called a Kirkwood–Buff integral [19,
20] (see Fig. 4.11) and plays a central role in relating the structure of a solution to
its thermodynamic properties [20]. For instance, combination of (2.74b), (4.72), and
(4.74) yields

eS˛� .0/ D kBT

hNi
�

@ hN˛i
@��

�

ˇ;V;f��¤� g
: (4.75)

The OZ relation (4.26) can be easily extended to mixtures. In consistency with
the physical idea sketched in Fig. 4.8, one now has

h˛� .r12/ D c˛� .r12/C n
X

�

x�

Z

dr3 c˛�.r13/h��.r32/ : (4.76)

In Fourier space,

Lc.k/ D Lh.k/ �
h

I C Lh.k/
i�1 D I �

h

I C Lh.k/
i�1

; (4.77)

https://photos.aip.org/history-programs/niels-bohr-library/photos/kirkwood-john-a2
https://photos.aip.org/history-programs/niels-bohr-library/photos/kirkwood-john-a2
https://photos.aip.org/history-programs/niels-bohr-library/photos/kirkwood-john-a2
https://photos.aip.org/history-programs/niels-bohr-library/photos/kirkwood-john-a2
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where Lc.k/ and Lh.k/ are matrices with elements Lc˛� .k/ � n
p

x˛x� Qc˛� .k/ and
Lh˛� .k/ � n

p
x˛x� Qh˛� .k/, respectively, and I is the identity matrix.

4.6.1 Thermodynamic Routes

The generalization of the compressibility route (4.29) to mixtures is not trivial [14,
21]. First we note that, as a purely mathematical property, the inverse of a matrix of
the form .@a˛=@b�/fb�¤� g is the matrix .@b˛=@a�/fa�¤� g [14]. Therefore, (4.75) can
be rewritten as

�

@�˛

@N�

�

ˇ;V;fN�¤� g
D kBT

N

h

eS�1.0/
i

˛�
; (4.78)

where the matrix eS.k/ is defined by the elementseS˛� .k/ and we have dropped the
angular brackets in N and N� because the left-hand side of (4.78) is understood
in the canonical ensemble rather than in the grand canonical one. Then, from the
thermodynamic relation (1.33) we finally obtain

��1
T D

X

˛;�

x˛x�
h

eS�1.0/
i

˛�
: (4.79)

In particular, in the case of a binary mixture,

��1
T D x21eS22.0/C x22eS11.0/� 2x1x2eS12.0/

eS11.0/eS22.0/� eS212.0/

D 1C nx1x2
�Qh11.0/C Qh22.0/� 2Qh12.0/

�

�

1C nx1 Qh11.0/
� �

1C nx2 Qh22.0/
�� n2x1x2

�Qh12.0/
�2
: (4.80)

The first line of (4.80) can also be rewritten as

�T DeSnn.0/�
�

eSnc.0/
�2

eScc.0/
; (4.81)

where [21, 22]

eSnn.k/ �eS11.k/CeS22.k/C 2eS12.k/ ; (4.82a)

eSnc.k/ � x2eS11.k/� x1eS22.k/C .x2 � x1/eS12.k/ ; (4.82b)

eScc.k/ � x21eS22.k/C x22eS11.k/ � 2x1x2eS12.k/ : (4.82c)
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The quantities eSnn.0/, eSnc.0/, and eScc.0/ measure density–density, density–
concentration, and concentration–concentration fluctuations, respectively [21, 22].

Noting that (4.74) can be rewritten aseS˛� .k/=
p

x˛x� D ı˛� C Lh˛� .k/, one finds
that (4.79) is equivalent to

��1
T D

X

˛;�

p
x˛x�

h

I C Lh.0/
i�1
˛�

D
X

˛;�

p
x˛x�

�

I � Lc.0/�
˛�

D1� n
X

˛;�

x˛x� Qc˛� .0/ ;

(4.83)

where (4.77) has been used in the second step. Equation (4.83) is the counterpart for
mixtures of (4.30).

The extensions to mixtures of the energy route (4.32), the virial route (4.40),
the chemical-potential route (4.51), and the free-energy route (4.56) are relatively
straightforward. The resulting expressions are summarized in Table 4.3 (compare
with Table 4.1 and the last row of Table 4.2). Note that, in analogy with (4.41), the
virial route can alternatively be written as

Z D 1C n

2d

X

˛;�

x˛x�

Z

dr y˛� .r/r
@f˛� .r/

@r
: (4.84)

In the case of the chemical-potential route [18], the evaluation of the excess
chemical potential associated with species �, �ex

� , assumes that the solute particle

Table 4.3 Summary of the main thermodynamic routes in a mixture

Thermodynamic
Route Quantity relation Expression

Compressibility
��1

T

�

@

@n
n2
@.ˇa/

@n

�

ˇ;fx˛g

X

˛;�

x˛x�



eS�1
�

˛�

Energy
uex

�

@.ˇaex/

@ˇ

�

n;fx˛g

n

2

X

˛;�

x˛x�

Z

dr�˛� .r/g˛� .r/

Virial
Z � 1 n

�

@.ˇaex/

@n

�

ˇ;fx˛g

�ˇn

2d

X

˛;�

x˛x�

Z

dr r
d�˛� .r/

dr
g˛� .r/

Chemical potential
�ex
�

�

@.naex/

@n�

�

ˇ;fn˛¤�g

n
X

˛

x˛

Z 1

0

d�

Z

dr
@�

.�/
0˛ .r/

@�
g
.�/
0˛ .r/

P

� x��ex
�

�

@.naex/

@n

�

ˇ;fx˛g

n
X

�;˛

x�x˛

Z 1

0

d�

Z

dr
@�

.�/
0˛ .r/

@�
g.�/0˛ .r/

Free energy
aex aex n

2

X

˛;�

x˛x�

Z 1

0

d�

Z

dr
@�

.�/
˛� .r/

@�
g.�/˛� .r/
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i D 0 is coupled to a particle of species ˛ via an interaction potential �.�/0˛ .r/ such
that

�
.�/
0˛ .r/ D

(

0 ; � D 0 ;

��˛.r/ ; � D 1 ;
(4.85)

so that it becomes a particle of species � at the end of the charging process. The
quantity g.�/0˛ .r/ is the associated solute–solvent RDF. In contrast, in the free-energy
route, all the particles of all the species are involved in switching the interactions
on.

The third column of Table 4.3 gives the thermodynamic relation between each
quantity and the free energy per particle. In the case of the single chemical
potential �ex

� , the free energy per particle is seen as a function of temperature
and partial number densities. On the other hand, thanks to (1.13) and the identity
G D �V2@ .F=V/=@V , in the thermodynamic relation between

P

� x��ex
� and aex,

the latter quantity is seen as a function of temperature, total number density, and
mole fractions. Therefore, the free energy can be derived by integrating over n
(compressibility, virial, and chemical-potential routes) or over ˇ (energy route),
analogously to the one-component case (see Table 4.2).

4.6.2 Hard Spheres

Let us now particularize the above expressions to multicomponent HS fluids [23],
in which case the interaction potential function is given by the form (3.7a) for any
pair of species. As a consequence,

@f˛� .r/

@r
D ı

�

r � �˛�
�

: (4.86)

The compressibility route (4.79) does not include the interaction potential
explicitly and so it is not simplified in the HS case. As for the energy route, the
integral

R

dr�˛�.r/g˛� .r/ vanishes because �˛� .r/e�ˇ�˛� .r/ ! 0 both for r < �˛�
and r > �˛� , while y˛� .r/ is finite even in the region r < �˛� (see Fig. 4.5).
Therefore,

hEi D N
d

2
kBT : (4.87)

This is not but the ideal-gas internal energy! This is an expected result since the
HS potential is only different from zero when two particles overlap and those
configurations are forbidden by the pair Boltzmann factor e�ˇ�˛� .r/.

The virial route is highly simplified for HSs. First, it is convenient to change to
spherical coordinates and take into account that the total d-dimensional solid angle
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(area of a d-dimensional sphere of unit radius) is
R

dbr D d2dvd, where the volume
of a d-dimensional sphere of unit diameter is defined by (3.43). Next, using the
property (4.86) in (4.84), we obtain

Z � p

nkBT
D 1C 2d�1nvd

X

˛;�

x˛x��
d
˛�y˛� .�˛� / : (4.88)

The same method works for the chemical-potential route with the choice

e�ˇ�.�/0˛ .r/ D �



r � �
.�/
0˛

�

; (4.89)

where �.0/0˛ D 0 and �.1/0˛ D ��˛ [see (4.85)]. Changing the integration variable from

� to �.�/�˛ , one gets

ˇ�� D ln
�

nx�ƒ
d
�

�Cd2dnvd

X

˛

x˛

Z ��˛

0

d�0˛ �d�1
0˛ y0˛.�0˛/ ; (4.90)

where use has been made of (2.75) and the notation has been simplified as �.�/�˛ !
�0˛ and y.�/�˛ ! y0˛. If �˛� � 1

2

�

�˛ C ��
�

(positive or zero nonadditivity, see p. 39),
it can be proved [18] that

d2dnvd

X

˛

x˛

Z 1
2 �˛

0

d�0˛ �d�1
0˛ y0˛.�0˛/ D � ln.1 � �/ ; (4.91)

where the total packing fraction is defined in (3.116). In that case, (4.90) can be
rewritten as

ˇ�� D ln
nx�ƒd

�

1 � � Cd2dnvd

X

˛

x˛

Z ��˛

1
2 �

d�0˛ �d�1
0˛ y0˛.�0˛/ : (4.92)

Finally, in the case of the free-energy route, it seems natural to choose the
intermediate potentials �˛� .r/ as maintaining a HS form, i.e.,

e�ˇ�.�/˛� .r/ D �



r � �.�/˛�

�

; (4.93)

where �.0/˛� D 0 and �.1/˛� D �˛� . In such a case, the free-energy route becomes

ˇaex D 2d�1dnvd

X

˛;�

x˛x�

Z 1

0

d�
h

�.�/˛�

id�1 @�.�/˛�
@�

y.�/˛�



�.�/˛�

�

: (4.94)
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Here the protocol �.�/˛� is arbitrary. In the special case of a simple rescaling, i.e.,

�
.�/
˛� D ��˛� , one has y.�/˛�




�
.�/
˛� I n

�

D y˛�
�

�˛� I n�d
�

[see (4.62)]. With that specific

choice, (4.94) reduces to

ˇaex D 2d�1vd

X

˛;�

x˛x��
d
˛�

Z n

0

dn0 y˛�
�

�˛� I n0� ; (4.95)

where the change of variables � ! n0 D n�d has been carried out. As expected,
(4.95) is fully equivalent to the virial route (4.88).

4.7 The Thermodynamic Inconsistency Problem

Going back to the case of an arbitrary interaction potential, we have seen that
the knowledge of the RDF allows one to obtain the free energy from at least five
different routes. This is shown explicitly by Table 4.2 for one-component systems
and sketched in Fig. 4.12. The important question is, would one obtain consistent
results?

Since all the thermodynamic routes are derived from formally exact statistical-
mechanical formulas, it is obvious that the use of the exact RDF g.r/ must lead to
the same exact free energy F.T;V;N/, regardless of the route followed. On the other
hand, if an approximate g.r/ is used, one must be aware that (in general) a different
approximate F.T;V;N/ is obtained from each separate route. This is known as the
thermodynamic (in)consistency problem. Which route is more accurate, i.e., which
route is more effective in concealing the deficiencies of an approximate g.r/, may
depend on the approximation, the potential, and the thermodynamic state.

Fig. 4.12 Schematic view of
the thermodynamic
inconsistency problem
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Exercises

4.1 Derive (4.6) and (4.7).

4.2 Derive (4.9) and (4.10).

4.3 Use (4.18) to derive (4.17).

4.4 Inserting (4.17) into (4.12), check (4.19) for s D 1, 2, and 3.

4.5 Prove the equivalence between (4.42) and (4.44).

4.6 Making use of Table 1.1 and (1.28), check the correctness of the third column
of Table 4.1.

4.7 Consider the protocol

�.�/.r/ D a.�/�.r=�/ ;

where a.�/ is any function subject to the constraints lim�!0 a.�/�.r=�/ D 0 and
lim�!1 a.�/ D 1. Prove that, in such a case, the free-energy route (4.56) becomes

aex D n

2

Z 1

0

d� �d�1a.�/
Z

dr
	

�
d ln a.�/

d�
�.r/� d�.r/

dr

�

g
�

rI n�d; ˇa.�/
�

:

4.8 Derive (4.69).

4.9 Derive (4.75).

4.10 Obtain (4.77) from (4.76).

4.11 Derive (4.80) from (4.79).

4.12 If all the species in a mixture are mechanically equivalent, then g˛� .r/ D g.r/
for all pairs. Check in that case that (4.80) reduces to (4.29).

4.13 Taking into account (4.82), prove the equivalence between (4.80) and (4.81).

4.14 Starting from Table 4.3, construct a table similar to (4.2), but for mixtures.

4.15 Derive (4.94).
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Chapter 5
One-Dimensional Systems: Exact Solution
for Nearest-Neighbor Interactions

One-dimensional systems with interactions restricted to nearest neighbors lend
themselves to a full exact statistical-mechanical solution, what has undoubtful
pedagogical and illustrative values. It is first noted in this chapter that the pair
correlation function in Laplace space can be expressed in terms of the nearest-
neighbor distribution function. The latter quantity is subsequently obtained in
the isothermal–isobaric ensemble. As explicit examples, the square-well, square-
shoulder, sticky-hard-rod, and nonadditive hard-rod fluids are worked out in detail.

5.1 Nearest-Neighbor and Pair Correlation Functions

As is apparent from (4.20), the evaluation of g.r/ is in general a formidable task,
comparable to that of the evaluation of the configuration integral itself. However, in
the case of one-dimensional systems (d D 1) of particles which only interact with
their nearest neighbors, the problem can be exactly solved [1–5]. Exact solutions are
also possible for some one-dimensional systems with interactions extending beyond
nearest neighbors, as happens in an isolated self-gravitating system [6], but those
other cases will not be considered in this chapter.

Let us consider a one-dimensional system of N particles in a box of length L (so
the number density is n D N=L) subject to an interaction potential �.r/ such that

1. limr!0 �.r/ D 1. This implies that the order of the particles in the line
does not change.

2. limr!1 �.r/ D 0. The interaction has a finite range.
3. Each particle interacts only with its two nearest neighbors.

© Springer International Publishing Switzerland 2016
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The total potential energy is then

˚N.rN/ D
N�1
X

iD1
�.xiC1 � xi/ : (5.1)

Given a particle at a certain position, let p.1/.r/dr be the conditional probability
of finding its (right) nearest neighbor at a distance between r and r C dr (see
Fig. 5.1). More in general, we can define p.`/.r/dr as the conditional probability
of finding its (right) `th neighbor (1 � ` � N � 1) at a distance between r and
r C dr (see Fig. 5.2). Since the `th neighbor must be somewhere, the normalization
condition is

Z 1

0

dr p.`/.r/ D 1 : (5.2)

In making the upper limit equal to infinity, we are implicitly assuming the
thermodynamic limit (L ! 1, N ! 1, n D const). Moreover, periodic boundary
conditions are supposed to be applied when needed.

As illustrated by Fig. 5.3, the following recurrence relation holds

p.`/.r/ D
Z r

0

dr0 p.1/.r0/p.`�1/.r � r0/ : (5.3)

The convolution structure of the integral invites one to introduce the Laplace
transform

bP.`/.s/ �
Z 1

0

dr e�rsp.`/.r/ ; (5.4)

Fig. 5.1 Two nearest-neighbor particles separated a distance r

Fig. 5.2 Two `th-order neighbors separated a distance r
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Fig. 5.3 Illustration of the convolution property (5.3)

so that (5.3) becomes

bP.`/.s/ DbP.1/.s/bP.`�1/.s/ )bP.`/.s/ D
h

bP.1/.s/
i`

: (5.5)

The normalization condition (5.2) is equivalent to

bP.`/.0/ D 1 : (5.6)

Now, given a reference particle at a certain position, the physical meaning of the
RDF (see p. 102) implies that ng.r/dr is the total number of particles at a distance
between r and rCdr, regardless of whether those particles correspond to the nearest
neighbor, the next-nearest neighbor, . . . of the reference particle. Thus,

ng.r/ D
N�1
X

`D1
p.`/.r/

N!1�!
1
X

`D1
p.`/.r/ : (5.7)

Introducing the Laplace transform

bG.s/ �
Z 1

0

dr e�rsg.r/ ; (5.8)

and using (5.5), we have

bG.s/ D 1

n

1
X

`D1

h

bP.1/.s/
i` D 1

n

bP.1/.s/

1 �bP.1/.s/ : (5.9)

Thus, the determination of the RDF g.r/ reduces to the determination of the
nearest-neighbor distribution function p.1/.r/.
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To proceed, we take advantage of the ensemble equivalence in the thermody-
namic limit and use the isothermal–isobaric ensemble.

5.2 Nearest-Neighbor Distribution: Isothermal–Isobaric
Ensemble

The isothermal–isobaric ensemble is described by (2.45) (see also Table 2.1). The
important point is that the N-body probability distribution function in configuration
space is proportional to e�ˇpV�ˇ˚N .rN / and the evaluation of any physical quantity
implies integrating over the volume and over the particle coordinates. Therefore,
in this ensemble the one-dimensional nearest-neighbor probability distribution
function is

p.1/.r/ /
Z 1

r
dL e�ˇpL

Z L

x2

dx3

Z L

x3

dx4 � � �
Z L

xN�1

dxN e�ˇ˚N .rN / ; (5.10)

where we have identified the volume V with the length L and have taken the particles
i D 1 (at x1 D 0) and i D 2 (at x2 D r) as the canonical nearest-neighbor pair (see
Fig. 5.4). Next, using (5.1) and applying periodic boundary conditions,

p.1/.r/ / e�ˇ�.r/
Z 1

r
dL e�ˇpL

Z L�r

0

dr3 e�ˇ�.r3/
Z L�r�r3

0

dr4 e�ˇ�.r4/

� � � �
Z L�r�r3�����rN�1

0

drN e�ˇ�.rN /e�ˇ�.rNC1/ ; (5.11)

where a change of variables xi ! ri D xi � xi�1 (i D 3; : : : ;N) has been carried out
and rNC1 D L� r � r3� r4�� � �� rN . Finally, the change of variable L ! L0 D L� r
implies that a factor e�ˇpr comes out of the integrals, the latter being independent
of r. In summary,

p.1/.r/ D Ke�ˇ�.r/e�ˇpr ; (5.12)

Fig. 5.4 Illustration of the evaluation of p.1/.r/ in the isothermal–isobaric ensemble
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where the proportionality constant K will be determined by normalization. The
Laplace transform of (5.12) is

bP.1/.s/ D Kb˝.s C ˇp/ ; (5.13)

where

b˝.s/ �
Z 1

0

dr e�rse�ˇ�.r/ (5.14)

is the Laplace transform of the pair Boltzmann factor e�ˇ�.r/. The normalization
condition (5.6) yields

K D 1

b˝.ˇp/
: (5.15)

5.3 Exact Radial Distribution Function and Thermodynamic
Quantities

Insertion of (5.13) and (5.15) into (5.9) gives the exact RDF (in Laplace space):

bG.s/ D 1

n

b˝.s C ˇp/
b˝.ˇp/� b˝.s C ˇp/

: (5.16)

To fully close the problem, it remains to determine the EoS. i.e., a relation between
the pressure p, the density n, and the temperature T. To do that, we apply the
consistency condition

lim
r!1 g.r/ D 1 ) lim

s!0
sbG.s/ D 1 : (5.17)

Expanding b˝.s C ˇp/ in powers of s and imposing (5.17), we obtain

n. p;T/ D �
b˝.ˇp/
b˝ 0.ˇp/

; (5.18)

where

b˝ 0.s/ � @b˝.s/

@s
D �

Z 1

0

dr e�rsre�ˇ�.r/ : (5.19)
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As discussed in Chap. 1 (see Table 1.1), the right thermodynamic potential in
the isothermal–isobaric ensemble is the Gibbs free energy G.N; p;T/. Using the
thermodynamic relation (1.16b) it is easy to obtain from (5.18) the explicit result

G.T; p;N/ D NkBT ln
ƒ.ˇ/

b˝.ˇpIˇ/ ; (5.20)

where the notation b˝.s/ ! b˝.sIˇ/ gas been employed to emphasize the parametric
dependence of the Laplace transform (5.14) on ˇ. Upon deriving (5.20), the
integration constant has been determined by noting that Gid D NkBT ln.ˇpƒ/ (see
Table 2.2) and

lim
s!0

sb˝.s/ D lim
s!0

Z 1

0

d x e�xe�ˇ�.x=s/ D 1 : (5.21)

Using standard thermodynamic relations (see Table 1.1), one gets

hEi
NkBT

D 1

2
C ˇb� .ˇpIˇ/

b˝.ˇpIˇ/ ; (5.22a)

F

NkBT
D ln

ƒ.ˇ/

b˝.ˇpIˇ/ C ˇpb˝ 0.ˇpIˇ/
b˝.ˇpIˇ/ ; (5.22b)

S

NkB
D 1

2
� ln

ƒ.ˇ/

b˝.ˇpIˇ/ � ˇpb˝ 0.ˇpIˇ/ � ˇb� .ˇpIˇ/
b˝.ˇpIˇ/ ; (5.22c)

where

b� .s/ �
Z 1

0

dr e�rs�.r/e�ˇ�.r/ (5.23)

is the Laplace transform of �.r/e�ˇ�.r/.
As a simple test, let us check that the EoS (5.18) is consistent with the

compressibility route (4.29). First, according to (5.18), the isothermal susceptibility
is

�T D
�

@n

@̌ p

�

ˇ

D �1C
b˝.ˇp/b˝ 00.ˇp/
h

b˝ 0.ˇp/
i2

; (5.24)

where

b˝ 00.s/ � @b˝ 0.s/
@s

D
Z 1

0

dr e�rsr2e�ˇ�.r/ : (5.25)
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Alternatively, the Laplace transform

bH.s/ D
Z 1

0

dr e�rsh.r/ (5.26)

of the total correlation function h.r/ D g.r/� 1 is bH.s/ D bG.s/ � s�1, and thus the
Fourier transform can be obtained as

Qh.k/ D
h

bH.s/C bH.�s/
i

sDik
D
h

bG.s/CbG.�s/
i

sDik
: (5.27)

In particular, the zero wavenumber limit is

Z

dr h.r/ D 2 lim
s!0

	

bG.s/� 1

s

�

D 2

"

b˝ 0.ˇp/
b˝.ˇp/

�
b˝ 00.ˇp/

2b˝ 0.ˇp/

#

; (5.28)

so that

1C n
Z

dr h.r/ D 1� 2
b˝.ˇp/
b˝ 0.ˇp/

"

b˝ 0.ˇp/
b˝.ˇp/

�
b˝ 00.ˇp/

2b˝ 0.ˇp/

#

D �1C
b˝.ˇp/b˝ 00.ˇp/
h

b˝ 0.ˇp/
i2

:

(5.29)

Comparison between (5.24) and (5.29) shows that (4.29) is indeed satisfied.

5.4 Extension to Mixtures

In the case of one-dimensional mixtures the arguments outlined above can be
extended without special difficulties [3–5]. Now, instead of p.`/.r/dr one defines
p.`/˛� .r/dr as the conditional probability that the `th neighbor to the right of a
reference particle of species ˛ is located at a distance between r and r C dr and
belongs to species � . The counterparts of (5.2), (5.3), and (5.7) are

X

�

Z 1

0

dr p.`/˛� .r/ D 1 ; (5.30a)

p.`/˛� .r/ D
X

�

Z r

0

dr0 p.1/˛� .r
0/p.`�1/�� .r � r0/ ; (5.30b)

nx�g˛� .r/ D
1
X

`D1
p.`/˛� .r/ : (5.30c)
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Next, by defining the Laplace transforms bP.`/˛� .s/ and bG˛� .s/ of p.`/˛� .r/ and g˛� .r/,
respectively, one easily arrives at

bG˛� .s/ D 1

nx�

�

bP.1/.s/ �
h

I �bP.1/.s/
i�1�

˛�

; (5.31)

wherebP.1/.s/ is the matrix of elementsbP.1/˛� .s/.
The nearest-neighbor probability distribution is again derived in the isothermal–

isobaric ensemble with the result

p.1/˛� .r/ D x�K˛�e�ˇ�˛� .r/e�ˇpr ; (5.32)

so that

bP.1/˛� .s/ D x�K˛�b˝˛� .s C ˇp/ ; (5.33)

where b˝˛�.s/ is the Laplace transform of e�ˇ�˛� .r/. The normalization condition
(5.30a) imposes the following relationship for the constants K˛� D K�˛:

X

�

x�K˛�b˝˛� .ˇp/ D 1 : (5.34)

To complete the determination of K˛� , we can make use of the physical condition

stating that limr!1 p.1/˛� .r/=p.1/˛� .r/ must be independent of the identity ˛ of the
species the reference particle belongs to, so that K˛�=K˛� is independent of ˛. It
is easy to see that such a condition implies

K2
˛� D K˛˛K�� ; 8˛; � : (5.35)

The EoS n.T; p; fx�g/ is determined, as in the one-component case, from the
condition

lim
r!1 g˛� .r/ D 1 ) lim

s!0
sbG˛� .s/ D 1 : (5.36)
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5.4.1 Binary Case

As a more explicit situation, here we particularize to a binary mixture. In that case,
(5.31) yields

bG11.s/ D
bQ11.s/

h

1 �bQ22.s/
i

CbQ2
12.s/

nx1bD.s/
;

bG22.s/ D
bQ22.s/

h

1 �bQ11.s/
i

CbQ2
12.s/

nx2bD.s/
;

bG12.s/ D bQ12.s/

n
p

x1x2bD.s/
;

(5.37a)

(5.37b)

(5.37c)

where

bQ˛� .s/ �
r

x˛
x�
bP.1/˛� .s/ D p

x˛x�K˛�b˝˛� .s C ˇp/ ; (5.38a)

bD.s/ �
h

1 �bQ11.s/
i h

1�bQ22.s/
i

�bQ2
12.s/ : (5.38b)

The parameters K˛� are obtained from (5.34) and (5.35). First, K11 and K22 can
be expressed in terms of K12 as

K11 D 1 � x2K12b˝12.ˇp/

x1b˝11.ˇp/
; K22 D 1 � x1K12b˝12.ˇp/

x2b˝22.ˇp/
: (5.39)

The remaining parameter K12 satisfies a quadratic equation whose solution is

K12 D 1 � p
1 � 4x1x2R

2x1x2Rb˝12.ˇp/
; R � 1 �

b˝11.ˇp/b˝22.ˇp/
b˝2
12.ˇp/

: (5.40)

Finally, the EoS becomes

1

n.T; p; x1/
D �

h

x21K11b˝
0
11.ˇp/C x22K22b˝

0
22.ˇp/C 2x1x2K12b˝

0
12.ˇp/

i

:

(5.41)
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As in the one-component case, we can use the thermodynamic relation (1.16b)
to obtain the exact Gibbs free energy of the mixture as

G.T; p;N1;N2/ D NkBT

"

x1 ln
x1ƒ1

b˝11

C x2 ln
x2ƒ2

b˝22

� ln
1C p

1� 4x1x2R

2
p
1 � R

Cjx1 � x2j ln
jx1 � x2j C p

1 � 4x1x2R

.jx1 � x2j C 1/
p
1� R

#

; (5.42)

where henceforth the absence of an argument in b˝˛� , b˝ 0̨
� , or b˝ 00̨

� means that
those functions are evaluated at s D ˇp. From (1.16c) we can obtain the chemical
potential of species ˛ as

ˇ�˛D ln
x˛ƒ˛

b˝˛˛

� ln
1Cp

1 � 4x1x2R

2
p
1 � R

Csgn .2x˛ � 1/ ln
jx1 � x2j C p

1 � 4x1x2R

.jx1 � x2j C 1/
p
1 � R

;

(5.43)
where the sign function is sgn.x/ D C1 if x > 0 and �1 otherwise.

In analogy with (5.28), the Kirkwood–Buff integrals [5, 7, 8] are

Qh˛� .0/ D 2 lim
s!0

	

bG˛� .s/ � 1

s

�

; (5.44)

with the results

Qh11.0/ D nbJ � 2x2K22b˝ 0
22

x1K12b˝12

� 2

nx1
; (5.45a)

Qh22.0/ D nbJ � 2x1K11b˝ 0
11

x2K12b˝12

� 2

nx2
; (5.45b)

Qh12.0/ D nbJ C 2
b˝ 0
12

b˝12

; (5.45c)

where

bJ�x21K11b˝
00
11 C x22K22b˝

00
22 C 2x1x2K12

"

b˝ 00
12�

b˝ 0
11
b˝ 0
22 � �

˝ 0
12

�2

˝12

#

: (5.46)

The knowledge of the Kirkwood–Buff integrals allows us to obtain the isothermal
susceptibility via (4.80). The numerator in ��1

T is a positive definite quantity since

1C nx1x2
�Qh11.0/C Qh22.0/� 2Qh12.0/

� D
p

1 � 4x1x2R : (5.47)
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Fig. 5.5 Léon Charles
Prudent van Hove
(1924–1990)
(Photograph reproduced with
permission from CERN,
https://cds.cern.ch/record/
917605)

Therefore, ��1
T never vanishes, what confirms the classical proof [9] by van Hove

(see Fig. 5.5) about the absence of phase transitions in one-dimensional nearest-
neighbor models.

5.5 Examples

5.5.1 Square Well

As a first application for one-component systems, let us consider the SW potential of
core diameter � , range � 0, and well depth " (see Table 3.1). The Laplace transforms
of the pair Boltzmann factor e�ˇ�SW.r/ and of the product �SW.r/e�ˇ�SW.r/ are

b˝.s/ D eˇ"e��s

s

h

1 � �

1 � e�ˇ"� e�.� 0��/s
i

; (5.48a)

b� .s/ D �"eˇ"e��s

s

h

1 � e�.� 0��/si ; (5.48b)

respectively. In order to apply the exact results for one-dimensional systems of
Sect. 5.3, we must prevent the SW interaction from extending beyond nearest
neighbors. This implies the constraint � 0 � 2� .

According to (5.18) and (5.22a), the number density and the internal energy per
particle are

1

n
D 1

ˇp
C � � � 0 �1 � e�ˇ"� e�.� 0��/ˇp

1 � �

1 � e�ˇ"� e�.� 0��/ˇp
; (5.49a)

ˇu � hEi
NkBT

D 1

2
� ˇ"

1 � e�.� 0��/ˇp

1 � �

1 � e�ˇ"� e�.� 0��/ˇp
: (5.49b)

It can be easily checked that the Maxwell relation [see (2.52)]

�

@.ˇu/

@.ˇp/

�

ˇ

D ˇ

�

@n�1

@̌

�

ˇp

(5.50)

https://cds.cern.ch/record/917605
https://cds.cern.ch/record/917605
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Fig. 5.6 Density dependence
(where n� � n� ) of the
compressibility factor
Z D ˇp=n of the
one-dimensional SW fluid for
several reduced temperatures
T� � kBT=" at � 0=� D 1:4

Fig. 5.7 Density dependence
of the excess internal energy
hEiex=N D hEi=N � 1

2
kBT

per particle of the
one-dimensional SW fluid for
several temperatures at
� 0=� D 1:4

is fulfilled. As illustrations, Figs. 5.6 and 5.7 show the density dependence of the
compressibility factor Z D ˇp=n and the excess internal energy hEiex D hEi� 1

2
kBT

per particle, respectively, for several temperatures at � 0=� D 1:4. As expected, the
pressure and the internal energy decrease as temperature decreases.
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As for the RDF, it is convenient to rewrite (5.16) in the series form (5.9), i.e.,

bG.s/ D 1

n

1
X

`D1

"

b˝.s C ˇp/
b˝.ˇp/

#`

D 1

n

1
X

`D1

e`ˇ"
h

b˝.ˇp/
i`
.s C ˇp/�`

�
X̀

jD0
.�1/j

 

`

j

!

�

1 � e�ˇ"�j
e�Œ j� 0C.`�j/��.sCˇp/ : (5.51)

Now, taking into account the mathematical property [10]

L �1
	

e�as

.s C b/`

�

D .r � a/`�1

.` � 1/Š
e�b.r�a/�.r � a/ ; (5.52)

where L �1Œ� � � � denotes the inverse Laplace transform, one gets

g.r/ D e�ˇpr

n

1
X

`D1

X̀

jD0
�
.j/
` .r/ ; (5.53)

with

�
. j/
` .r/ � .�1/je`ˇ"` �1 � e�ˇ"�j

jŠ.` � j/Š
h

b˝.ˇp/
i`

�

r � j� 0 � .` � j/�
�`�1

�
�

r � j� 0 � .` � j/�
�

:

(5.54)

This shows that g.r/ is discontinuous at r D � and � 0, while it presents a kink at
r D 2� , � C � 0, and 2� 0.

Note that, although an infinite number of terms formally appear in (5.53), only
the terms up to ` D `max are actually needed if one is interested in g.r/ in the range
r < .`max C 1/� . In particular, in the range � < r < 2� ,

g.r/ D e�ˇpr

nb˝.ˇp/

(

eˇ" ; � < r < � 0 ;
1 ; � 0 < r < 2� :

(5.55)

Figures 5.8 and 5.9 show the RDF for several temperatures (at n� D 0:6) and
several densities (at T� D 1), respectively, in the case � 0=� D 1:4. Needless
to say, the RDF becomes more structured as density increases and/or temperature
decreases.

The Fourier transform Qh.k/ of the total correlation function is directly obtained
from the Laplace transformbG.s/ via (5.27). This in turn allows one to get the Fourier
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Fig. 5.8 Plot of the RDF of
the one-dimensional SW fluid
for several temperatures at
n� D 0:6 and � 0=� D 1:4

Fig. 5.9 Plot of the RDF of
the one-dimensional SW fluid
for several densities at
T� D 1 and � 0=� D 1:4

transform Qc.k/ of the DCF through the OZ relation (4.27). The result is

nQc.k/ D 2 �
NA
h

k2

.ˇp/2
C 1

i

C A



cos� 0k � k
ˇp sin � 0k

�

� cos �k C k
ˇp sin �k

NA k2

2.ˇp/2
� .A= NA/ Œ1 � cos.� 0 � �/k� ;

(5.56)
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Fig. 5.10 Plot of the DCF of
the one-dimensional SW fluid
for several temperatures at
n� D 0:6 and � 0=� D 1:4

Fig. 5.11 Plot of the DCF of
the one-dimensional SW fluid
for several densities at
T� D 1 and � 0=� D 1:4

where A � e�.� 0��/ˇp
�

1 � e�ˇ"� and NA � 1 � A. A numerical inverse Fourier
transform then yields c.r/, while the structure factor eS.k/ can be obtained from
(4.28). Figures 5.10, 5.11, 5.12, and 5.13 display c.r/ andeS.k/ for the same states
as in Figs. 5.8 and 5.9. We can observe that c.r/ has a kink at r D � 0 � � and is
discontinuous at r D � and � 0. Also, the DCF is generally small, but nonzero, in the
region r > � 0, i.e., beyond the range of the interaction potential.
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Fig. 5.12 Plot of the
structure factor of the
one-dimensional SW fluid for
several temperatures at
n� D 0:6 and � 0=� D 1:4

Fig. 5.13 Plot of the
structure factor of the
one-dimensional SW fluid for
several densities at T� D 1

and � 0=� D 1:4

5.5.2 Square Shoulder

As seen from Table 3.1, the SS potential is formally equivalent to the SW potential
with the change " ! �". Therefore, the exact one-dimensional solution is still given
by (5.48)–(5.56), except that " ! �". In spite of this simple change, the physics
behind the purely repulsive SS potential is quite different from that of the SW
potential. This is clearly illustrated by Figs. 5.14–5.21 which are the counterparts
of Figs. 5.6–5.13, respectively.
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Fig. 5.14 Density
dependence of the
compressibility factor
Z D ˇp=n of the
one-dimensional SS fluid for
several temperatures at
� 0=� D 1:4

Fig. 5.15 Density
dependence of the excess
internal energy
hEiex=N D hEi=N � 1

2
kBT

per particle of the
one-dimensional SS fluid for
several temperatures at
� 0=� D 1:4

5.5.3 Hard Rods and Sticky Hard Rods

We consider now the sticky-hard-rod (SHR) fluid, which is the one-dimensional
version of the SHS fluid [see (3.4) and Table 3.1].

From (3.5) we have

e�ˇ�.r/ D �.r � �/C ��1�ı.r � �/ : (5.57)
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Fig. 5.16 Plot of the RDF of
the one-dimensional SS fluid
for several temperatures at
n� D 0:6 and � 0=� D 1:4

Fig. 5.17 Plot of the RDF of
the one-dimensional SS fluid
for several densities at
T� D 1 and � 0=� D 1:4

Therefore,

b˝.s/ D
�

��1� C 1

s

�

e��s : (5.58)
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Fig. 5.18 Plot of the DCF of
the one-dimensional SS fluid
for several temperatures at
n� D 0:6 and � 0=� D 1:4

Fig. 5.19 Plot of the DCF of
the one-dimensional SS fluid
for several densities at
T� D 1 and � 0=� D 1:4

The EoS (5.18) becomes a quadratic equation for the pressure, whose physical
solution is

Z � ˇp

n
D
p

1C 4��1n�=.1� n�/� 1

2��1n� : (5.59)
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Fig. 5.20 Plot of the
structure factor of the
one-dimensional SS fluid for
several temperatures at
n� D 0:6 and � 0=� D 1:4

Fig. 5.21 Plot of the
structure factor of the
one-dimensional SS fluid for
several densities at T� D 1

and � 0=� D 1:4

In what concerns the SHR RDF, application of (5.16) gives

bG.s/ D 1

n




��1 C ��1

sCˇp

�

e��s

��1 C ��1

ˇp �



��1 C ��1

sCˇp

�

e��s
D 1

n

1
X

`D1




��1 C ��1

sCˇp

�`




��1 C ��1

ˇp

�`
e�`�s :

(5.60)
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Analogously to the case of (5.51), the last equality in (5.60) allows one to perform
the inverse Laplace transform term by term with the result

g.r/ D e�ˇpr

n

1
X

`D1
�`.r/ ; (5.61)

where

�`.r/ D eˇp`�




��1 C ��1

ˇp

�`

h

��`ı.r � `�/

C��1 X̀

jD1

 

`

j

!

��.`�j/

.j � 1/Š

 r

�
� `

�j�1
�.r � `�/

i

: (5.62)

Thus, the RDF includes a “comb” of Dirac deltas at r D �; 2�; 3�; : : :, plus a
“regular” part that otherwise is discontinuous at r D �; 2�; 3�; : : :. Again, only
the first `max terms are needed in (5.61) if one is interested in the range 1 � r=� <
`max C 1.

Using (5.57), it is straightforward to see that the RDF and the cavity function in
the SHR model are related by

g.r/ D ��1�y.�/ı.r � �/C y.r/�.r � �/ : (5.63)

This, together with (5.61) and (5.62), implies the contact value

y.�/ D ˇp

n.1C ��1ˇp�/
: (5.64)

This is useful to obtain the mean potential energy per particle,

uex

"
� hEiex

N"
D �n���1y.�/ D � 1

1C �=ˇp�
; (5.65)

where the energy route (4.33) has been particularized to our system.
From (4.27) and (5.27) it is easy to obtain the Fourier transform of the DCF and

its inverse transform as [11]

Qc.k/ D �2ˇp

n

1C ��1ˇp�

1C 2��1ˇp�

	

��2ˇp�2

1C ��1ˇp�
� ��1� cos�k C sin �k

k

C �

1C ��1ˇp�
�

ˇp
1 � cos�k

k2

�

; (5.66a)
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c.r/ D �ˇp

n

1C ��1ˇp�

1C 2��1ˇp�

n ��2ˇp�2

1C ��1ˇp�
ı.r/� ��1�ı.r � �/

�

1C �

1C ��1ˇp�
�

ˇp .� � r/
�

�.� � r/
o

: (5.66b)

Note that, in contrast to the SW case [see (5.56)], the inverse Fourier transform
Qc.k/ ! c.r/ can be performed analytically.

The hard-rod (HR) model is the one-dimensional version of the HS system. It
can be seen as a special case of the SHR model with zero stickiness (��1 ! 0). In
that limit, (5.59), (5.62), and (5.66) simply become

Z D 1

1 � n�
; (5.67)

�`.r/ D eˇp`� .ˇp/`
.r � `�/`�1

.` � 1/Š
�.r � `�/ ; (5.68)

Qc.k/ D �2ˇp

n

�

sin �k

k
C ˇp

1� cos �k

k2

�

; (5.69a)

c.r/ D �ˇp

n
Œ1C ˇp .� � r/��.� � r/ ; (5.69b)

respectively. From (5.68) we see that g.r/ is discontinuous at r D � and has a kink
at r D 2� . The cavity function y.r/ in the hard-core region 0 � r � � turns out
to be given by the same expression as that of g.r/ in the first coordination shell
� < r < 2� [12], i.e., y.r/ D e�ˇp.r��/=.1 � n�/, 0 � r � � . This implies that y.r/
is analytic at r D � .

The exact EoS (5.67) for the HR system was obtained independently by Lord
Rayleigh (see Fig. 5.22) [13] and Korteweg (see Fig. 5.23) [14] in 1891, and
rederived much later by Herzfeld and Goeppert-Mayer (see Fig. 3.2) [15] and
Tonks [16].

Figures 5.24, 5.25, 5.26, and 5.27 show g.r/ andeS.k/ for a HR fluid (��1 D 0)
and for a representative case of a SHR fluid (� D 5) at several densities.

5.5.4 Mixtures of Nonadditive Hard Rods

As an illustrative example of a one-dimensional mixture, we consider here a
nonadditive hard-rod (NAHR) binary mixture [see (3.7)]. The nearest-neighbor
interaction condition requires �˛! � �˛� C ��! , 8.˛; �; !/, as illustrated by
Fig. 5.28. In the binary case, this condition implies 2�12 � max.�1; �2/.
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Fig. 5.22 John William
Strutt, 3rd Baron Rayleigh
(1842–1919)
(Photograph from Wikimedia
Commons, https://commons.
wikimedia.org/wiki/File:
Robert_John_Strutt,
_Lord_Rayleigh.
_Photograph_by_Elliott_
%26_F_Wellcome_V0027060.
jpg)

Fig. 5.23 Diederik Johannes
Korteweg (1848–1941)
(Photograph from Wikimedia
Commons, https://en.
wikipedia.org/wiki/File:D.J.
Korteweg.JPG)

The Laplace transform of e�ˇ�˛� .r/ is

b˝˛�.s/ D e��˛� s

s
: (5.70)

The EoS is obtained by application of (5.39)–(5.41). Figures 5.29 and 5.30 present
the compressibility factor for representative cases of a symmetric and an asymmetric
mixture, respectively.

In the special case of an additive mixture, i.e., �12 D 1
2
.�1 C �2/, one has

b˝11.s/b˝22.s/ D b˝2
12.s/. Thus, by taking the limit R ! 0 in (5.40), one gets

https://commons.wikimedia.org/wiki/File:Robert_John_Strutt,_Lord_Rayleigh._Photograph_by_Elliott_%26_F_Wellcome_V0027060.jpg
https://commons.wikimedia.org/wiki/File:Robert_John_Strutt,_Lord_Rayleigh._Photograph_by_Elliott_%26_F_Wellcome_V0027060.jpg
https://commons.wikimedia.org/wiki/File:Robert_John_Strutt,_Lord_Rayleigh._Photograph_by_Elliott_%26_F_Wellcome_V0027060.jpg
https://commons.wikimedia.org/wiki/File:Robert_John_Strutt,_Lord_Rayleigh._Photograph_by_Elliott_%26_F_Wellcome_V0027060.jpg
https://commons.wikimedia.org/wiki/File:Robert_John_Strutt,_Lord_Rayleigh._Photograph_by_Elliott_%26_F_Wellcome_V0027060.jpg
https://commons.wikimedia.org/wiki/File:Robert_John_Strutt,_Lord_Rayleigh._Photograph_by_Elliott_%26_F_Wellcome_V0027060.jpg
https://commons.wikimedia.org/wiki/File:Robert_John_Strutt,_Lord_Rayleigh._Photograph_by_Elliott_%26_F_Wellcome_V0027060.jpg
https://en.wikipedia.org/wiki/File:D.J.Korteweg.JPG
https://en.wikipedia.org/wiki/File:D.J.Korteweg.JPG
https://en.wikipedia.org/wiki/File:D.J.Korteweg.JPG
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Fig. 5.24 Plot of the RDF of
the one-dimensional HR fluid
for several densities

Fig. 5.25 Plot of the
“regular” part of the RDF of
the one-dimensional SHR
fluid for several densities at
� D 5. The complete RDF
requires adding

P1

`D1 ı.r �
`�/=n.1C �=ˇp�/` to the
regular part

K˛� D 1=b˝˛� .ˇp/. In that case, (5.41) becomes

Z D 1

1 � � ; (5.71)
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Fig. 5.26 Plot of the
structure factor of the
one-dimensional HR fluid for
several densities

Fig. 5.27 Plot of the
structure factor of the
one-dimensional SHR fluid
for several densities at � D 5

where � D n.x1�1 C x2�2/ is the packing fraction of the one-dimensional mixture.
The EoS (5.71) is plotted in Figs. 5.29 and 5.30 as the curves corresponding
to �12=�1 D 1 and �12=�1 D 0:75, respectively. It is worth noting that the
compressibility factor (5.71) in the additive case is independent of the composition
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Fig. 5.28 Threshold
situation (�˛! D �˛� C ��!)
for nearest-neighbor
interaction

Fig. 5.29 Dependence on the
packing fraction
� D n.x1�1 C x2�2/ of the
compressibility factor
Z D ˇp=n of an equimolar
(x1 D x2 D 1

2
) and

symmetric (�2=�1 D 1)
one-dimensional NAHR fluid
for several values of �12=�1.
Note that the cases with
�12=�1 < 1 correspond to
negative nonadditivity, while
those with �12=�1 > 1
correspond to positive
nonadditivity (see p. 39)

of the mixture at a fixed packing fraction and, therefore, it is the same as for the
one-component HR system [see (5.67)].

As for the structural properties, the recipe described by (5.37) and (5.38) can be
easily implemented [4]. In order to obtain the RDFs g˛� .r/ in real space, we first
note that, according to (5.38b),

1

bD.s/
D

1
X

`D0

h

bQ11.s/CbQ22.s/CbQ2
12.s/�bQ11.s/bQ22.s/

i`

: (5.72)

When this is inserted into (5.37), one can express bG˛� .s/ as linear combinations of
terms of the form bQ j1

11 .s/bQ
j2
22 .s/bQ

j3
12 .s/. The inverse Laplace transforms g˛� .r/ D

L �1
h

bG˛� .s/
i

are readily evaluated by using the property (5.52). The final result

can be written as

g11.r/ D e�ˇpr

nx1

1
X

`D0

X̀

j1D0

`�j1
X

j2D0

`�j1�j2
X

j3D0

.�1/`�j1�j2�j3`Š

j1Šj2Šj3Š.` � j1 � j2 � j3/Š
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Fig. 5.30 Dependence on the
packing fraction
� D n.x1�1 C x2�2/ of the
compressibility factor
Z D ˇp=n of an equimolar
(x1 D x2 D 1

2
) and

asymmetric (�2=�1 D 0:5)
one-dimensional NAHR fluid
for several values of �12=�1.
Note that the case with
�12=�1 < 0:75 corresponds to
negative nonadditivity, while
those with �12=�1 > 0:75
correspond to positive
nonadditivity (see p. 39)

�
h

.1 � ı`;0/�
.2j3/
`�j1�j3;`�j2�j3

.r/� �
.2j3/
`�j1�j3;`C1�j2�j3

.r/
i

; (5.73a)

g22.r/ D e�ˇpr

nx2

1
X

`D0

X̀

j1D0

`�j1
X

j2D0

`�j1�j2
X

j3D0

.�1/`�j1�j2�j3`Š

j1Šj2Šj3Š.` � j1 � j2 � j3/Š

�
h

.1 � ı`;0/�
.2j3/
`�j1�j3;`�j2�j3

.r/� �
.2j3/
`C1�j1�j3;`�j2�j3

.r/
i

; (5.73b)

g12.r/ D e�ˇpr

n
p

x1x2

1
X

`D0

X̀

j1D0

`�j1
X

j2D0

`�j1�j2
X

j3D0

.�1/`�j1�j2�j3`Š

j1Šj2Šj3Š.` � j1 � j2 � j3/Š

��.2j3C1/
`�j1�j3;`�j2�j3

.r/ ; (5.73c)

where

�
.j3/
j1;j2
.r/ D .x1K11/

j1Cj3=2 .x2K22/
j2Cj3=2 .r � j1�1 � j2�2 � j3�12/

j1Cj2Cj3�1

.j1 C j2 C j3 � 1/Š
�� .r � j1�1 � j2�2 � j3�12/ : (5.74)

Analogously to the cases of (5.53) and (5.61), only the terms �.j3/
j1;j2
.r/ such that

j1�1 C j2�2 C j3�12 < rmax are needed if one is interested in distances r < rmax.
Figures 5.31 and 5.32 show g˛� .r/ for particular binary mixtures with negative

and positive nonadditivities, respectively. Although the composition, density, and
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Fig. 5.31 Plot of the RDFs
for an equimolar
(x1 D x2 D 1

2
)

one-dimensional NAHR
binary mixture with
�2=�1 D 0:75, �12=�1 D 0:5,
and
� D n.x1�1 C x2�2/ D 0:8

Fig. 5.32 Plot of the RDFs
for an equimolar
(x1 D x2 D 1

2
)

one-dimensional NAHR
binary mixture with
�2=�1 D 0:75,
�12=�1 D 1:25, and
� D n.x1�1 C x2�2/ D 0:8

sizes �1 and �2 are common in both cases, a dramatic effect can be observed when
changing the cross distance �12.
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Exercises

5.1 Justify (5.10) in view of Fig. 5.4.

5.2 Check (5.11).

5.3 Derive (5.18) and (5.20).

5.4 Derive (5.22).

5.5 Use (5.21), together with lims!0 s2b˝ 0.s/ D �1 and lims!0
b� .s/ D 0, to check

that the set of Eq. (5.22) yields ideal-gas expressions (see Table 2.2) in the limit
p ! 0.

5.6 Derive (5.27) and (5.28).

5.7 Justify (5.30) physically.

5.8 Derive (5.31).

5.9 Making use of (5.32), prove that (5.35) is implied by the physical
conditionlimr!1 p.1/˛� .r/=p.1/˛� .r/ D independent of ˛.

5.10 Check that (5.31) reduces to (5.37) and (5.38) in the binary case.

5.11 Derive (5.39) and (5.40) from (5.34) and (5.35).

5.12 Making use of (5.38)–(5.40), check that lims!0
bD.s/ D 0 and that (5.41) can

be derived by applying the condition (5.36) to any of the three functions (5.37).

5.13 Consider a binary mixture where all the interactions are identical, i.e.,
b˝11.s/ D b˝22.s/ D b˝12.s/ D b˝.s/. Taking the limit R ! 0 in (5.40), check
that K11 D K22 D K12 D K D 1=b˝.ˇp/, bQ˛� .s/ D p

x˛x�Kb˝.s C ˇp/,
bD.s/ D 1 � Kb˝.s C ˇp/. Then, check that (5.37) and (5.41) reduce to (5.16) and
(5.18), respectively.

5.14 Using (1.16b), (5.39), and (5.40), check that (5.41) can be obtained from
(5.42).

5.15 Taking into account that lims!0 sb˝˛� .s/ D 1 [see (5.21)], prove that (5.41)
and (5.42) become nid D ˇp and Gid D NkBT Œx1 ln .ˇpx1ƒ1/C x2 ln .ˇpx2ƒ2/�,
respectively, in the ideal-gas limit p ! 0.

5.16 Derive (5.43).

5.17 Check that (5.42) and (5.43) satisfy the thermodynamic relation (1.14).

5.18 Check the correctness of (5.45).

5.19 Consider again a binary mixture where all the interactions are identical, i.e.,
b˝11.s/ D b˝22.s/ D b˝12.s/ D b˝.s/. Check that in that case the three equations
(5.45) reduce to (5.28).
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5.20 Using (5.41) and inserting (5.45) into (4.80), check that the thermodynamic
relation �T D kBT.@n=@p/T;x1 is indeed satisfied.

5.21 Check (5.47).

5.22 Show that (5.49a) becomes n�1 D .ˇp/�1 C BSW
2 CO.ˇp/ in the limit of low

pressure, where the second virial coefficient BSW
2 can be found in Table 3.6.

5.23 Check that (5.49) satisfy the Maxwell relation (5.50).

5.24 Starting from the EoS of the one-dimensional SW fluid, check that the EoS
(5.67) of the HR fluid is obtained either in the limit of vanishing well width
(� 0 ! �) or in the limit of infinite temperature (ˇ" ! 0).

5.25 By using (5.55), check that (5.49b) can be reobtained from the energy route
(4.32).

5.26 From (5.53)–(5.55), check that the cavity function y.r/ D eˇ�.r/g.r/ of the
one-dimensional SW potential is everywhere continuous.

5.27 Derive (5.56).

5.28 Take the zero wavenumber limit k ! 0 in (5.56) and apply the compressibility
route (4.30) to obtain the isothermal susceptibility of the one-dimensional SW fluid.
Check that the same result is obtained from (5.24).

5.29 Download and install the Wolfram CDF Player (http://www.wolfram.com/
cdf-player) in your computer. Play with the Demonstration of reference [17] to
explore how the RDF and the structure factor of the one-dimensional SW and SS
fluids change with the well or shoulder width, the reduced temperature T� D kBT=",
and the packing fraction � D n� D n� .

5.30 Make the change " ! �" in (5.49a) to obtain the EoS of the one-dimensional
SS fluid. Then, check that the EoS (5.67) of the HR fluid of length � 0 is obtained in
the limit of vanishing temperature (ˇ" ! 1).

5.31 Make the change eˇ" ! ��1=.� 0=� � 1/ in (5.48a). Then, take the limit
� 0 ! � to reobtain (5.58).

5.32 Derive (5.59).

5.33 Derive (5.61) and (5.62).

5.34 Make the change eˇ" ! ��1=.� 0=� � 1/ in (5.49b). Then, take the limit
� 0 ! � to reobtain (5.65).

5.35 Insert (5.58) into (5.20) to obtain

ˇG.T; p;N/

N
D ˇp� � ln

��1� C 1=ˇp

ƒ.ˇ/

http://www.wolfram.com/cdf-player
http://www.wolfram.com/cdf-player
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for the Gibbs free energy of the SHR model. Next, from the thermodynamic
relations of Table 1.1, prove that the internal energy in the isothermal–isobaric
ensemble is given by

E D @.ˇG/

@̌
� p

@G

@p
:

Finally, using the property @��1=@̌ D "��1, check that the excess internal energy
per particle coincides with (5.65).

5.36 Derive (5.66).

5.37 Make the change eˇ" ! ��1=.� 0=��1/ in (5.56). Then, take the limit � 0 ! �

to reobtain (5.66a).

5.38 One can always use (3.4) to assign an effective stickiness ��1 to the SW
potential. Using (5.59) and (5.65), compare the compressibility factor and the excess
internal energy per particle of the one-dimensional SW fluid for the cases of Figs. 5.6
and 5.7 with those of the one-dimensional SHR fluid with the corresponding values
of the effective stickiness ��1.

5.39 Download and install the Wolfram CDF Player (http://www.wolfram.com/
cdf-player) in your computer. Play with the Demonstration of reference [18] to
explore how the RDF of the one-dimensional SHR fluid changes with the stickiness
��1 and the packing fraction � D n� D n� .

5.40 Check (5.71).

5.41 Derive (5.73).

5.42 Check from (5.73) and (5.74) that the contact values of the cavity functions of
an NAHR mixture are y˛� .�˛� / D g˛� .�C̨

� / D n�1K˛�e�ˇp�˛� . Then, using (5.39),

check that in an equimolar binary mixture (x1 D x2 D 1
2
) one has y11.�1/ D y22.�2/.

5.43 Consider again a NAHR mixture. Insert the contact values y˛� .�˛� / D
n�1K˛�e�ˇp�˛� into the virial route (4.88) to check that the resulting expression is
equivalent to (5.41).

5.44 Download and install the Wolfram CDF Player (http://www.wolfram.com/
cdf-player) in your computer. Play with the Demonstration of reference [19] to
explore how the RDFs of the one-dimensional NAHR mixture change with the
packing fraction, the composition, and the size ratios.
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Chapter 6
Density Expansion of the Radial Distribution
Function and Approximate Integral Equations

This chapter deals with the derivation of the coefficients of the radial distribution
function in its expansion in powers of density. As in Chap. 3, the main steps
involving diagrammatic manipulations are justified with simple examples. The
classification of diagrams depending on their topology leads to the introduction of
the hypernetted-chain and Percus–Yevick approximations, plus other approximate
integral equations. The chapter ends with some relations in connection with the
internal consistency among different thermodynamic routes in approximate theories.

6.1 Introduction

In analogy with what was said for the EoS p.n;T/ in Chap. 3, it is not possible
to derive the exact RDF g.r/ for a general interaction potential �.r/ and arbitrary
density n and temperature T. As discussed in Chap. 5, an exceptional case is that of
one-dimensional systems with interactions restricted to nearest neighbors.

On the other hand, again in analogy with Chap. 3 [see (3.8)], the problem
simplifies significantly if the RDF is represented by an expansion in powers of the
number density:

g.r/ D g0.r/C g1.r/n C g2.r/n
2 C � � � : (6.1)

The aim of this chapter is to derive expressions for the virial coefficients gk.r/ as
functions of T for any (short-range) interaction potential �.r/. First, a note of cau-
tion: although for an ideal gas one has gid.r/ D 1 (and limn!0 Z D Zid D B1 D 1),
in a real gas limn!0 g.r/ D g0.r/ ¤ 1. This is so because, even if the density is
extremely small, interactions create correlations among particles. For instance, in
a HS fluid, g.r/ D 0 for r < � , no matter how large or small the density is (see
Fig. 4.4).
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6.2 External Force: Functional Analysis

Because of the same reasons as in Chap. 3, the most convenient framework to derive
the coefficients gk.r/ in (6.1) is provided by the grand canonical ensemble.

As seen from (2.36)–(2.39), the thermodynamic quantities can be obtained in the
grand canonical ensemble from derivatives of ln� with respect to the temperature
parameter ˇ D 1=kBT and the chemical potential parameter ˛ D �ˇ�. On the other
hand, the correlation functions ns.rs/ are given by (4.7b) and it is not obvious at all
how they can be related to a derivative of ln� . This is possible, however, by means
of a trick consisting in assuming that an external potential uext.r/ is introduced in
the system. In that case, the potential energy function becomes

˚N.r N/ ! ˚N.r N juext/ D ˚N.r N/C
N
X

iD1
uext.ri/ : (6.2)

The notation ˚N.r N juext/ means that ˚N is a functional of the external potential
uext.r/. The associated grand canonical partition function becomes, in analogy with
(3.13) and (3.17),

�.˛; ˇ;Vj/ D 1C
1
X

ND1

OzN

NŠ

Z

dr N WN.1; 2; : : : ;Nj/ ; (6.3a)

ln�.˛; ˇ;Vj/ D
1
X

`D1

Oz`
`Š

Z

dr` U`.1; 2; : : : ; `j/ ; (6.3b)

where

.r/ � e�ˇuext.r/ ; (6.4a)

WN.r N j/ � WN.r N/
Ỳ

iD1
.ri/ ; (6.4b)

U`.r`j/ � U`.r`/
Ỳ

iD1
.ri/ : (6.4c)

To proceed, we will need the simple functional derivative rule

ı

ı.r/
.r1/ D ı.r1 � r/ : (6.5)
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This implies

ı

ı.r/

N
Y

kD1
.rk/ D

"

N
Y

kD1
.rk/

#

N
X

iD1

ı.ri � r/
.ri/

; (6.6a)

ı2

ı.r/ı.r0/

N
Y

kD1
.rk/ D

"

N
Y

kD1
.rk/

#

X

i¤j

ı.ri � r/ı.rj � r0/
.ri/.rj/

; (6.6b)

plus similar relations for higher order functional derivatives of
QN

kD1 .rk/. It is then
straightforward to obtain the s-body configurational distribution function ns in the
absence of external force ( D 1) [see (4.7b)] as the sth-order functional derivative
of �./ at  D 1, divided by � , i.e.,

ns.rs/ D 1

�

ıs�./

ı.r1/ı.r2/ � � � ı.rs/

ˇ

ˇ

ˇ

ˇ

D1
: (6.7)

In particular,

n1.r1/ D ı ln�./

ı.r1/

ˇ

ˇ

ˇ

ˇ

D1
; (6.8a)

n2.r1; r2/ D ı ln�./

ı.r1/
ı ln�./

ı.r2/

ˇ

ˇ

ˇ

ˇ

D1
C ı2 ln�./

ı.r1/ı.r2/

ˇ

ˇ

ˇ

ˇ

D1

D n1.r1/n1.r2/C ı2 ln�./

ı.r1/ı.r2/

ˇ

ˇ

ˇ

ˇ

D1
: (6.8b)

In (6.8), n1.r/ D n D hNi =V is actually independent of the position r of the particle,
but it is convenient for the moment to keep the notation n1.r/.

6.3 Root and Field Points

Taking into account (6.4c), application of (6.6) yields

ı

ı.r/

Z

dr`U`.r`j/
ˇ

ˇ

ˇ

ˇ

D1
D `

Z

dr2 � � � dr` U`.rI r2; : : : ; r`/ ; (6.9a)

ı2

ı.r/ı.r0/

Z

dr`U`.r`j/
ˇ

ˇ

ˇ

ˇ

D1
D `.` � 1/

Z

dr3 � � � dr` U`.r; r0I r3; : : : ; r`/ :

(6.9b)
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Therefore, using (6.3b) and (6.8), we have

n1.r1/ D Oz C
1
X

`D2

Oz`
.` � 1/Š

Z

dr2 � � � dr` U`.1I 2; : : : ; `/ ; (6.10a)

n2.r1; r2/ D n1.r1/n1.r2/C Oz2U2.1; 2/

C
1
X

`D3

Oz`
.` � 2/Š

Z

dr3 � � � dr` U`.1; 2I 3; : : : ; `/ : (6.10b)

In the above equations we have distinguished between position variables that are
integrated out and those which are not. We will call field points to the former and
root points to the latter (see p. 45). Thus,

U`.rI r2; : : : ; r`/ W Cluster function with 1 root point and ` � 1 field points ;

U`.r; r0I r3; : : : ; r`/ W Cluster function with 2 root points and ` � 2 field points :

Based on (3.19), the first few one-root cluster diagrams are

(6.11a)

(6.11b)

(6.11c)

(6.11d)

In agreement with (3.22), a filled circle means that the integration over that field
point is carried out. As a consequence, some of the diagrams in (3.19c) and
(3.19d) that were topologically equivalent need (in principle) to be disentangled
in (6.11c) and (6.11d), respectively, since the new diagrams are invariant under the
permutation of two field points but not under the permutation root $ field.
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We observe from (6.10a) that the expansion of density in powers of fugacity has
the structure

n1.r1/ D n D
1
X

`D1
`b`Oz` ; (6.12)

with

b` D 1

`Š

X

all clusters with 1 root and ` � 1 field points. (6.13)

As expected, (6.11), (6.12), and (6.13) are equivalent to (3.29), (3.10), and (3.30),
respectively. Note that, due to the translational invariance property (2.62), all the
one-root diagrams sharing the same topology have a common value.

Again from (3.19), one can realize that the first few two-root cluster diagrams are

(6.14a)

(6.14b)

(6.14c)

The diagrams in (6.14) framed with a box are those in which a direct bond between
the root particles 1 and 2 exists. We will call them closed clusters. The other clusters
in which the two root particles are not directly linked will be called open clusters.
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An immediate property of closed clusters is that they factorize into � � times an
open cluster. For instance,

(6.15a)

(6.15b)

(6.15c)

(6.15d)

In some cases, the root particles 1 and 2 become isolated after factorization. This
happens, for instance, in (6.15a), (6.15c), and (6.15d).

6.4 Expansion of the Pair Correlation Function in Powers
of Fugacity

According to (6.10b), the coefficients of the expansion of n2.1; 2/ come from
two sources: the product n1.1/n1.2/ and the two-root clusters. The first class is
represented by two-root diagrams where particles 1 and 2 are fully isolated [see
(6.12) and (6.13)]. The second class includes open and closed clusters, the latter
ones factorizing as in (6.15). Taking into account all of this, it is easy to see that the
first few coefficients in the expansion of n2.1; 2/ in powers of Oz can be factorized as

(6.16a)

(6.16b)

(6.16c)
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It can be proved that this factorization scheme extends to all orders. Thus, in general,

n2.r1; r2/ D e�ˇ�.r1;r2/
1
X

`D2
˛`.r1; r2/Oz` ; (6.17)

where

˛`.r1; r2/ D 1

.` � 2/Š
X

all open clusters with 2 root points and ` � 2 field points.

A note of caution about the nomenclature employed is in order. We say that the
diagrams in ˛` are open because the two root particles are not directly linked. But
they are also clusters because either the group of ` particles are connected or they
would be connected if we imagine a bond between the two roots. Having this in
mind, we can apply the same criterion as in Chap. 3 [see (3.20) and (3.21)] and
classify the open clusters into open reducible clusters and open irreducible clusters
(or open stars). Of course, all open clusters with particles 1 and 2 isolated are
reducible. In general, the open reducible clusters factorize into products of open
irreducible clusters. For instance,

(6.18a)

(6.18b)

(6.18c)

(6.18d)

Examples of two-root open irreducible clusters (open “stars”) are

(6.19)
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6.5 Expansion of the Radial Distribution Function in Powers
of Density

Equation (6.17) has the structure of (3.9) with X ! eˇ�n2, NX0 D NX1 D 0, and
NX` ! ˛`. Elimination of fugacity in favor of density, as in (3.11), allows us to write

n2.r1; r2/ D e�ˇ�.r1;r2/
1
X

kD2
�k.r1; r2/nk ; (6.20)

where the role of the coefficients Xk is played by �k. Now, using the relationship
(3.12), we obtain

�2 D 1 ; (6.21a)

(6.21b)

(6.21c)

Here we have taken into account that b1 D ˛2 D 1. The explicit diagrams displayed
in (6.21b) and (6.21c) are the ones surviving after making use of (6.11b), (6.11c),
(6.16b), (6.16c), and the factorization properties (6.18). In general,

�k.r1; r2/D 1

.k � 2/Š
X

all open stars with 2 root points and k � 2 field points.
(6.22)

In analogy with Table 3.3, a summary of the “distillation” process leading to
(6.20) is presented in Table 6.1.

Table 6.1 Summary of diagrams contributing to different quantities

Expansion

Quantity in powers of Coefficient Diagrams Equation

�./ Fugacity (Oz) WN./=NŠ All (disconnectedCclusters) (6.3a)

ln�./ Fugacity (Oz) U`./=`Š Clusters (reducibleCstars) (6.3b)

n1.r1/ Fugacity (Oz) `b` 1-root open clusters (reducibleCstars) (6.12)

n2.r1; r2/ Fugacity (Oz) ˛`.r1; r2/ 2-root open clusters (reducibleCstars) (6.17)

n2.r1; r2/ Density (n) �k.r1; r2/ 2-root open stars (6.20)
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Taking into account the definitions (4.14) (with s D 2) and (4.25) of the RDF
and the cavity function, respectively, (6.20) can be rewritten as

g.r/ De�ˇ�.r/
"

1C
1
X

kD1
�kC2.r/nk

#

;

y.r/ D1C
1
X

kD1
�kC2.r/nk :

(6.23a)

(6.23b)

Thus, the functions gk.r/ in (6.1) are given by gk.r/ D e�ˇ�.r/�kC2.r/. In particular,
in the limit n ! 0, g.r/ ! g0.r/ D e�ˇ�.r/, which differs from the ideal-gas
function gid.r/ D 1, as anticipated. However, limn!0 y.r/ D 1.

The formal extension of the result g0.r/ D e�ˇ�.r/ to any order in density defines
the so-called potential of mean force  .r/ from

g.r/ D e�ˇ .r/ )  .r/ D �kBT ln g.r/ : (6.24)

Obviously,  .r/ ¤ �.r/, except in the limit n ! 0. In general,

ˇ .r/ D ˇ�.r/ � ln y.r/ : (6.25)

Table 6.2 shows the diagrams contributing to �2.r/–�5.r/ [1]. As the order k
increases, the number of diagrams and their complexity increase dramatically. The
simplest diagram (of course, apart from �2 D 1) is the one corresponding to �3.
More explicitly [see (6.21b)],

�3.r12/ D
Z

dr3 f .r13/f .r23/ : (6.26)

6.5.1 Some Examples

In the special case of HSs, where f .r/ D ��.� � r/ (see Table 3.1), it can be
seen from (6.26) that �3.r/ coincides with the intersection volume of two spheres of
radius � whose centers are separated a distance r [2], i.e.,

�HS
3 .r/ D V�;� .r/

D 2d�1 .�=4/.d�1/=2

�
�

dC1
2

� �d�.2� � r/B1�r2=4�2

�

d C 1

2
;
1

2

�

; (6.27)
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Table 6.2 Diagrams contributing to �2.r/, �3.r/, �4.r/, and �5.r/ in the expansions (6.23)

Density term Coefficient Diagrams

n0 �2 D 1
n �3

n2

2

2�4

n3

6

6�5

where we recall that Bx.a; b/ [see (3.64)] is the incomplete beta function [3, 4]. In
particular, (3.81a) and (3.82) imply

�HS
3 .r/ D �2

"

2 cos�1 r

2�
� r

�

r

1 � r2

4�2

#

�.2� � r/ ; .d D 2/ ; (6.28a)

�HS
3 .r/ D �

12
�3



2 � r

�

�2 


4C r

�

�

�.2� � r/ ; .d D 3/ : (6.28b)

Let us consider now the SW potential (see Table 3.1). One can check that its
associated Mayer function can be written as

fSW.r/ D .1C xSW/fHS.r/ � xSWfHS0.r/ ; xSW � eˇ" � 1 ; (6.29)

where fHS.r/ and fHS0.r/ are the Mayer functions of HS fluids with diameters � and
� 0, respectively. Therefore, from (6.26) we obtain [5]

�SW
3 .r/ D .1C xSW/

2V�;� .r/ � 2xSW.1C xSW/V�;� 0.r/C x2SWV� 0;� 0.r/ : (6.30)

We recall here that the intersection volume Va;b.r/ is given by (3.80), complemented
by (3.82), (3.81a), and (3.81b) for d D 2, 3, and 5, respectively. The result for the
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SS potential (see again Table 3.1) is obtained from the SW result by the formal
replacement " ! �", i.e., xSW ! �xSS � �.1 � e�ˇ"/.

The SHS function �SHS
3 .r/ can be derived from (6.30) by expanding in powers of

� 0 � � and taking the limit xSW ! 1 with � D finite [see (3.4)]. The result is

�SHS
3 .r/ D V�;� .r/� 2�

d2d�1�

	

@Va;b.r/

@b

�

aDbD�
C

 �

d2d�1�

�2
	

@2Va;b.r/

@b@a

�

aDbD�
:

(6.31)

For three-dimensional SHS fluids,

�SHS
3 .r/ D �HS

3 .r/� �

72
�3��1

h

12



2 � r

�

�

� ��1 �
r

i

�.2� � r/ ; .d D 3/ :

(6.32)

The exact evaluation of higher-order functions �k.r/ becomes much more
complicated. On the other hand, each one of the diagrams contributing to �4.r/ [see
(6.21c)] has been evaluated for three-dimensional HSs [6–8]. The results are

��
2

36

.r � 3/4

35r
.r3 C 12r2 C 27r � 6/�.3 � r/ ; (6.33a)

(6.33b)

(6.33c)

(6.33d)

where

�A.r/ � �2

630
.r � 1/4 �r2 C 4r � 53� 162r�1�

�2�
�

3r6

560
� r4

15
C r2

2
� 2r

15
C 9

35r

�

cos�1 �r2 C r C 3
p

3.4� r2/
; (6.34a)

�B.r/ � �

"

�r2
�

3r2

280
� 41

420

�p
3 � r2 �

�

23

15
r � 36

35r

�

cos�1 r
p

3.4 � r2/
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C
�

3r6

560
� r4

15
C r2

2
C 2r

15
� 9

35r

�

cos�1 r2 C r � 3
p

3.4 � r2/

C
�

3r6

560
� r4

15
C r2

2
� 2r

15
C 9

35r

�

cos�1 �r2 C r C 3
p

3.4� r2/

#

: (6.34b)

The separate knowledge of each one of the diagrams contributing to �k.r/ for HS
fluids allows one to immediately know those diagrams in the case of PS fluids. From
Table 3.1 we see that

fPS.r/ D xPSfHS.r/ ; xPS � 1 � e�ˇ" : (6.35)

Thus, one simply needs to multiply a given HS diagram by a factor equal to xPS

raised to a power equal to the number of bonds to get the corresponding PS diagram.
For example, (6.28b), (6.33a), (6.33b), (6.33c), and (6.33d) need to be multiplied by
x2PS, x3PS, x4PS, x4PS, and x5PS, respectively.

6.6 Equation of State: Virial Coefficients

The knowledge of the coefficients �k.r/ allows us to obtain the virial coefficients
Bk.T/ defined in (3.8) in a way alternative to the one worked out in Chap. 3. Any
of the thermodynamic routes summarized in Table 4.1 can in principle be used.
This is schematically summarized by Fig. 6.1. As long as all the exact diagrams in
�k.r/ are incorporated, it does not matter which route is employed to get the virial
coefficients. The most straightforward route is the virial one [see (4.41)], according

Fig. 6.1 Scheme of the
relationship between the
functions �k.r/ and the virial
coefficients Bk
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to which

Bk.T/ D 1

2d

Z

dr �k.r/r
@f .r/

@r
: (6.36)

Passing to spherical coordinates and integrating by parts, (6.36) can be rewritten as

Bk D 2d�1vd

Z 1

0

dr rd�k.r/
@f .r/

@r
D �2d�1vd

Z 1

0

dr rd�1f .r/
	

d C r
@�k.r/

@r

�

D �1
2

Z

dr f .r/�k.r/ � 1

2d

Z

drf .r/r � r�k.r/ ; (6.37)

where in the last step use has been made of the mathematical property r@=@r D r �r.
In particular, since �2.r/ D 1, expression (3.48) for the second virial coefficient is
recovered from the second line of (6.37).

As a slightly less simple example, let us consider the third virial coefficient.
Taking into account (6.26), we can write

Z

drf .r/r � r�3.r/ D
Z

dr2

Z

dr3 f .r2/f .r3/r2 � r2 f .r23/

D �
Z

dr2

Z

dr3 f .r2/f .r3/r3 � r2 f .r23/ : (6.38)

In the first step we have chosen r1 as the origin of coordinates, while in the second
step we have exchanged the variables r2 $ r3 and have taken into account that
r3f .r23/ D �r2 f .r23/. Next, we express

R

drf .r/r � r�3.r/ as the arithmetic mean
of the first and second lines, namely

Z

drf .r/r � r�3.r/ D 1

2

Z

dr2

Z

dr3 f .r2/f .r3/r23 � r23f .r23/

D 1

2

Z

dr1 Œr1 � r1f .r1/�
Z

dr2 f .r2/f .r12/ : (6.39)

In the second step we have made first the change of variable r3 ! r23 and then
the change of notation r23 ! r1. The final result in (6.39) can be recognized from
(6.26) and (6.36) as dB3. Therefore, inserting

R

drf .r/r � r�3.r/ D dB3 into (6.37),
we get

B3 D �1
3

Z

dr f .r/�3.r/ ; (6.40)

in agreement with (3.33b).
Obviously, the equivalence between (6.36), complemented by (6.22), and (3.34)

extends to all orders.
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As a simple test, let us rederive the first four virial coefficients of three-
dimensional HSs. From (6.28b), (6.33), and (6.34), we have

y.�/ D 1C 5

2
�C 1

4

"

2 707

70
C 219

p
2

35�
� 4 131 cos�1.1=3/

70�

#

�2 C � � � ; (6.41a)

eS.0/ D 1C 4�n
Z 1

0

dr r2h.r/

D 1 � 8�C 34�2 �
"

6 534

35
C 876

p
2

35�
� 8 262 cos�1.1=3/

35�

#

�3 C � � � :

(6.41b)

Using the compressibility and virial routes [see (4.29) and (4.88), respectively], it is
straightforward to obtain the (rescaled) virial coefficients

b2 D 4 ; b3 D 10 ; b4 D 2 707

70
C 219

p
2

35�
� 4 131 cos�1.1=3/

70�
; .d D 3/ ;

(6.42)

in full agreement with the values presented in Chap. 3 (see Tables 3.8 and 3.11).

6.7 Classification of Open Star Diagrams

We have already seen in (6.22) and (6.23) that all the open star diagrams contribute
to the RDF g.r/. Now we want to find out which subset of those diagrams
contributes to the DCF c.r/ defined by the OZ relation (4.26). In the process, we
will derive formally exact relations between c.r/, h.r/, and some other functions.

First, we recall from Table 6.2 that

(6.43)
We now introduce the following classification of open stars:

• “Chains” (or nodal diagrams), C .r/: Subset of open diagrams having
at least one node. A node is a field particle which must be necessarily
traversed when going from one root to the other root.
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The first few terms in the expansion of C .r12/ are

(6.44)

• Open “parallel” diagrams (or open “bundles”), P.r/: Subset of open
diagrams with no nodes, such that there are at least two totally independent
(“parallel”) paths to go from one root to the other root. The existence
of parallel paths means that if the roots (together with their bonds) were
removed, the resulting diagram would break into two or more pieces.

The function P.r/ is of second order in density:

(6.45)

• “Bridge” (or “elementary”) diagrams, B.r/: Subset of open diagrams
with no nodes, such that there do not exist two totally independent ways to
go from one root to the other root.

Analogously to P.r/, the bridge function B.r/ is of order n2:

(6.46)

Table 6.3 shows the three classes of star diagrams up to order n3 [1]. Since the
three classes exhaust all the open stars, we can write

y.r/ D 1C C .r/C P.r/C B.r/ : (6.47)

As for the total correlation function, the diagrams contributing to it are

(6.48)
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Table 6.3 Diagrams contributing to �2.r/, �3.r/, �4.r/, and �5.r/ in the expansions (6.23)

Density term Coefficient Diagrams

n0 �2 D 1
n �3

n2

2

2�4

n3

6

6�5

The unframed diagrams, the diagrams framed with an oval, and the diagrams framed with a box
contribute to C .r/, P.r/, and B.r/, respectively

In general,

h.r/ D
1
X

kD0

nk

kŠ

X

open and closed stars with 2 roots and k field points.

It is not worth classifying the closed diagrams any further. Instead, they join the
open bundles to create an augmented class:

• “Parallel” diagrams (or “bundles”), PC.r/: All closed diagrams plus
the open bundles.
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The first few ones are

(6.49)

Obviously,

h.r/ D C .r/C PC.r/C B.r/ : (6.50)

Why this classification? There are two main reasons. First, open parallel
diagrams (P) factorize into products of chains (C ) and bridge diagrams (B). For
instance,

(6.51a)

(6.51b)

(6.51c)

(6.51d)

(6.51e)

As a consequence, it can be proved that

P D 1

2Š
.C C B/2 C 1

3Š
.C C B/3 C � � � D eCCB � .1C C C B/ :

This is equivalent to

C C B D ln.1C C C P C B/ : (6.52)
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Making use of (6.52) in (6.47), we obtain ln y D C C B or, equivalently,

ln g.r/ D �ˇ�.r/C C .r/C B.r/ : (6.53)

The second important reason for the classification of open stars is that, as we are
about to see, the chains (C ) do not contribute to the DCF c.r/. Let us first rewrite
(6.48) by overlining the chains:

(6.54)

Next, the OZ relation (4.26) can be iterated to yield

c D h � nh � h C n2h � h � h � n3h � h � h � h C � � � ; (6.55)

where the asterisk denotes a convolution integral. It turns out that the diagrams
representing those convolutions are always chains. For instance,

(6.56a)

(6.56b)

Inserting (6.54) and (6.56) into (6.55), one obtains

(6.57)

Thus, as anticipated, all chain diagrams cancel out! This is not surprising after all
since the chains are the open diagrams that more easily can be “stretched out”, thus
allowing particles 1 and 2 to be correlated via intermediate particles, even if the
distance r12 is much larger than the interaction range. Note, however, that the DCF
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is not limited to closed diagrams but also includes the open diagrams with no nodes.
Therefore,

c.r/ D PC.r/C B.r/ : (6.58)

From (6.47), (6.50), (6.53), and (6.58) we can extract the chain function in three
alternative ways:

C .r/ D eˇ�.r/g.r/� 1 � P.r/� B.r/ ; (6.59a)

C .r/ D ln g.r/C ˇ�.r/ � B.r/ ; (6.59b)

C .r/ D h.r/� c.r/ : (6.59c)

Combination of (6.59a) and (6.59c) yields

c.r/ D g.r/
�

1� eˇ�.r/
�C P.r/C B.r/ : (6.60)

Similarly, combining (6.59b) and (6.59c) one gets

c.r/ D g.r/� 1 � ln g.r/� ˇ�.r/C B.r/ : (6.61)

6.8 Approximate Closures

As already remarked, the OZ (4.26) defines c.r/. Therefore, it is not a closed
equation. Likewise, (6.60) and (6.61) are formally exact, but they are not closed
either since they have the structure c.r/ D c1Œh.r/;P.r/ C B.r/� and c.r/ D
c2Œh.r/;B.r/�, respectively, where

c1ŒX;Y� � .1C X/
�

1 � eˇ�
�C Y ; (6.62a)

c2ŒX;Y� � X � ln.1C X/� ˇ� C Y : (6.62b)

However, if an approximate closure of the form c.r/ D capproxŒh.r/� is assumed,
the OZ relation becomes an approximate closed integral equation:

h.r/ D capproxŒh.r/�C n
Z

dr0 capproxŒh.r
0/�h.jr � r0j/ : (6.63)

In contrast to a truncated density expansion, a closure c.r/ D capproxŒh.r/� is
applied to all orders in density. In most of the cases, it is an ad hoc approximation
whose usefulness must be judged a posteriori. The two prototype closures are the



176 6 Density Expansion of the Radial Distribution Function and Approximate. . .

Fig. 6.2 Jerome K. Percus
(b. 1926)
(Photograph courtesy of J.K.
Percus, http://physics.as.nyu.
edu/object/JeromePercus.
html)

Fig. 6.3 George J. Yevick
(1922–2011)
[Photograph courtesy of
David Yevick, from D. Yevick
and H. Yevick, Fundamental
Math and Physics for
Scientists and Engineers
(Wiley, Hoboken, NJ, 2014)]

hypernetted-chain (HNC) [9, 10] and the Percus–Yevick (PY, see Figs. 6.2 and 6.3)
[11] ones.

6.8.1 Hypernetted-Chain and Percus–Yevick Approximate
Integral Equations

The HNC closure consists in setting B.r/ D 0 in (6.61), i.e., cHNCŒh� D c2Œh; 0�, so
that

c.r/ D g.r/� 1 � ln g.r/� ˇ�.r/ ; (HNC) : (6.64)

http://physics.as.nyu.edu/object/JeromePercus.html
http://physics.as.nyu.edu/object/JeromePercus.html
http://physics.as.nyu.edu/object/JeromePercus.html
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Similarly, the PY closure is obtained by setting P.r/ C B.r/ D 0 in (6.60), i.e.,
cPYŒh� D c1Œh; 0�, what results in

c.r/ D g.r/
�

1� eˇ�.r/
�

; (PY) : (6.65)

By inserting the above closures into the OZ relation (4.26) we obtain the HNC and
PY integral equations, respectively:

HNC ) ln
�

g.r/eˇ�.r/
� D �n

Z

dr0
n

ln
h

g.r0/eˇ�.r0/
i

� h.r0/
o

h.jr � r0j/ ; (6.66a)

PY ) g.r/eˇ�.r/ � 1 D �n
Z

dr0 hg.r0/eˇ�.r0/ � 1 � h.r0/
i

h.jr � r0j/ : (6.66b)

Interestingly, if one formally assumes that y.r/ � g.r/eˇ�.r/ � 1 and applies
the linearization property ln

�

g.r/eˇ�.r/
� ! g.r/eˇ�.r/ � 1, then the HNC integral

equation (6.66a) becomes the PY integral equation (6.66b). On the other hand, the
PY approximation stands by itself, even if y.r/ is not close to 1.

A few comments are in order. First, the density expansion of hHNC.r/ and yHNC.r/
can be obtained from the closed integral equation (6.66a) by iteration. It turns out
that not only the bridge diagrams disappear, but also some chain and open parallel
(or bundle) diagrams (of order n3 and higher) are not retained either [1]. This is
because the neglect of B.r/ at the level of (6.61) propagates to other non-bridge
diagrams at the level of (6.47). For instance, while (6.52) is an identity, we cannot
neglect B.r/ on both sides, i.e., C ¤ ln.1C C C P/. A similar comment applies
to hPY.r/ and yPY.r/, in which case some chain diagrams disappear along with all
the bridge and open parallel diagrams. This is illustrated by comparison between
Tables 6.3 and 6.4.

Another interesting feature is that all the diagrams neglected in the density
expansion of yHNC.r/ are neglected in the density expansion of yPY.r/ as well.
However, the latter neglects extra diagrams which are retained by yHNC.r/ (see
Table 6.4). Thus, one could think that the HNC equation is always a better
approximation than the PY equation. On the other hand, this is not necessarily the
case, especially for HS-like systems. In those cases the diagrams neglected in the
PY approximation may cancel each other to a reasonable degree, so that adding
more diagrams (as HNC does) may actually worsen the result. For instance, the
combination of the two diagrams neglected by the PY approximation to first order
in density is

(6.67)

where the dotted line on the right-hand side means an e-bond between the field
particles 3 and 4, i.e., a pair Boltzmann factor e.r34/ � 1C f .r34/ D e�ˇ�.r34/. The
right-hand side diagram of (6.67) is a simple example of the diagrams introduced
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Table 6.4 Diagrams contributing to �2.r/, �3.r/, �4.r/, and �5.r/ in the expansions (6.23)

Density term Coefficient Diagrams

n0 �2 D 1

n �3

n2

2

2�4

n3

6

6�5

The diagrams framed with a box are neglected by the HNC approximation, while the diagrams
enclosed with a box or with an oval are neglected by the PY approximation

Fig. 6.4 William Graham
Hoover (b. 1937)
(Photograph by Baidurya
Bhattacharya, courtesy of
Wm. G. Hoover)

by Ree and Hoover (see Fig. 6.4) [12], which are obtained from the standard Mayer
diagrams by substituting 1 D e.r/ � f .r/ for all field–field and field–root pairs not
connected by an f -bond. For instance,

(6.68)

For HS-like interactions, the f -bonds force particles to remain close together, while
the e-bonds force them to be apart. These competing conditions make some Ree–
Hoover diagrams, like the one in (6.67), to be almost negligible.
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Fig. 6.5 Plot of 1
2

� �

� � (top

curve), 1
2

� �

� � (bottom
curve), and

1
2


 � �

� � C � �

� �

�

(middle

curve) for three-dimensional
HSs

In the HS specific case, the three diagrams in (6.67) vanish if r12 > 2� since in
that case it is impossible that either particle 3 or particle 4 can be separated from
both 1 and 2 a distance smaller than � . If r12 < 2� , the only configurations which
contribute to the Ree–Hoover diagram on the right-hand side of (6.67) are those
where r13 < � , r23 < � , r14 < � , and r24 < � but r34 > � . It is obvious that those
configurations represent a smaller volume than the ones contributing to any of the
two diagrams on the left-hand side of (6.67), especially if r12 > � . In fact, as can be
seen from (6.33c) and (6.33d), the right-hand side of (6.67) vanishes if r >

p
3� in

the three-dimensional case.
The distance dependencies of the three diagrams in (6.67) are plotted in Fig. 6.5

in the range 1 � r=� � 2 for three-dimensional HSs. Figure 6.6 displays the exact
function �4.r/ (obtained by adding the four contributing diagrams shown in the
third row of Table 6.4), together with the HNC approximation �HNC

4 .r/ (obtained
by adding the first three diagrams and neglecting the fourth one) and the PY
approximation �PY

4 .r/ (obtained by adding the first two diagrams and neglecting

the third and fourth ones). We observe that the complete star diagram neglected
by the HNC approximation is negative, what yields �HNC

4 .r/ > �4.r/. On the

other hand, the diagram is almost equally positive, so that the sum
is weakly positive (see Fig. 6.5). As a consequence, �PY

4 .r/ < �4.r/ but the PY error
j�PY
4 .r/ � �4.r/j is clearly much smaller than the HNC one j�HNC

4 .r/ � �4.r/j.
Being approximate, the RDF g.r/ obtained from either the PY or the HNC

integral equations is not thermodynamically consistent, i.e., in general, virial route
¤ chemical-potential route ¤ compressibility route ¤ energy route. However, it can
be proved that the virial and energy routes are equivalent in the HNC approximation
for any interaction potential [13, 14].
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Fig. 6.6 Plot of �4.r/ for
three-dimensional HSs. The
solid, dashed, and
dash-dotted curves
correspond to the exact,
HNC, and PY functions,
respectively

As a simple illustration of the thermodynamic inconsistency problem, let us
consider again the fourth virial coefficient of three-dimensional HS fluids. From
(6.28b) and (6.33), we can easily obtain

y.�/ D 1C 5

2
�C

�

4C 25

8
�

�

�2 C � � � ; .d D 3/ ; (6.69a)

eS.0/ D 1C 4�n
Z 1

0

dr r2h.r/

D 1� 8�C 34�2 �
�

108� 2 357

105
�

�

�3 C � � � ; .d D 3/ ; (6.69b)

where a factor � has been attached to the diagram , so that the PY and HNC
approximations correspond to � D 0, and � D 1, respectively. Notice the difference
between (6.69) and the exact result (6.41). Using again the compressibility and virial
routes [see (4.29) and (4.88), respectively], one can obtain

Virial route ) b4 D 16C 25

2
� ; .d D 3/ ; (6.70a)

Compressibility route ) b4 D 19 � 2 357

420
� ; .d D 3/ : (6.70b)

The values obtained by setting � D 0 (PY) and � D 1 (HNC) are shown in Table 6.5,
which also includes the results obtained through the chemical-potential route [15,
16]. As can be observed, the three PY values are closer to the exact result b4 '
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Table 6.5 Fourth virial coefficient b4 for three-dimensional HSs, according to the virial, chemical-
potential, and compressibility routes in the PY and HNC approximations

PY HNC

Chemical- Chemical-
Virial potential Compressibility Virial potential Compressibility

16
67

4
D 16:75 19

57

2
D 28:5

227

8
D 28:375

5 623

420
' 13:388

Table 6.6 Some characteristic closures of the form B.r/ D BapprŒ�.r/�

Closure Reference BapprŒ�.r/�

HNC [9, 10] 0

PY [11] ln Œ1C �.r/�� �.r/
Verlet (modified) [31, 32] �aV;1

Œ�.r/�2

1C aV;2�.r/
; aV;1 D 1

2
; aV;2 D 4

5

Martynov–Sarkisov [33]
p
1C 2�.r/� �.r/� 1

Rogers–Young [34]
ln

�

1C exp Œ.1� e�aRYr/�.r/�� 1

1� e�aRYr

�

� �.r/ ; aRY D 4

25

Ballone–Pastore– [35]
Œ1C aBPGG�.r/�

1=aBPGG � �.r/� 1 ; aBPGG D 15

8Galli–Gazzillo

18:365 than any of the three HNC values. Note also that the virial and chemical-
potential routes yield rather similar values in both approximations, especially in the
HNC case.

What makes the PY integral equation particularly appealing is that it admits a
non-trivial exact solution for three-dimensional HS [17–19] and SHS [20] liquids,
their additive mixtures [21–23], and their generalizations to d D odd [24–28]. We
will return to this point in Chap. 7.

6.8.2 A Few Other Closures

Apart from the classical PY and HNC approximations, many other ones have been
proposed in the literature [13, 29, 30]. Most of them are formulated by closing
the formally exact relation (6.61) with an approximation of the form B.r/ D
BapprŒ�.r/�, where

�.r/ � h.r/� c.r/ (6.71)

is the indirect correlation function, which is made of all the chain diagrams, i.e.,
�.r/ D C .r/, as can be seen from (6.50) and (6.58). A few examples of closure
relations are displayed in Table 6.6, where, for comparison, the HNC and PY
closures are included as well.
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The parameters aV;1, aV;2, aRY, and aBPGG are usually determined by ensuring
thermodynamic consistency between the virial and compressibility routes and,
therefore, they depend in principle on the thermodynamic state .n;T/ of the system.
The numerical values given in Table 6.6 are empirical fractional values adequate for
HSs.

6.8.3 Linearized Debye–Hückel and Mean Spherical
Approximations

Some other closures are proposed in forms different from c.r/ D capproxŒh.r/� or
B.r/ D BapproxŒ�.r/�. Two simple examples are the linearized Debye–Hückel
(LDH) theory (see Figs. 6.7 and 6.8) and the mean spherical approximation (MSA).

Fig. 6.7 Peter Joseph
William Debye (1884–1966)
(Photograph from Wikimedia
Commons, http://en.
wikipedia.org/wiki/File:
Debije-boerhaave.jpg)

Fig. 6.8 Erich Hückel
(1896–1980)
(Photograph from Wikimedia
Commons, http://en.
wikipedia.org/wiki/File:
Hueckel.jpg)

http://en.wikipedia.org/wiki/File:Debije-boerhaave.jpg
http://en.wikipedia.org/wiki/File:Debije-boerhaave.jpg
http://en.wikipedia.org/wiki/File:Debije-boerhaave.jpg
http://en.wikipedia.org/wiki/File:Hueckel.jpg
http://en.wikipedia.org/wiki/File:Hueckel.jpg
http://en.wikipedia.org/wiki/File:Hueckel.jpg
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The LDH theory consists in retaining only the linear chain diagrams in the
expansion of the cavity function y.r/ [see (6.43)]:

(6.72)

where we have denoted by w.r/ � y.r/ � 1 the shifted cavity function. This
apparently crude approximation is justified in the case of long-range interactions
(like Coulomb’s) since the linear chains are the most divergent diagrams but their
sum gives a convergent result [29]. The approximation (6.72) is also valid for
bounded potentials in the high-temperature limit [36]. For those potentials j f .r/j
can be made arbitrarily small by increasing the temperature and thus, at any order in
density, the linear chains (having the least number of bonds) are the dominant ones.

In Fourier space, (6.72) becomes

LDH ) Qw.k/ D n
�Qf .k/�2 C n2

�Qf .k/�3 C n3
�Qf .k/�4 C � � � D n

�Qf .k/�2
1� nQf .k/ : (6.73)

The conventional Debye–Hückel theory is obtained from (6.73) by assuming that
(i) jw.r/j 	 1, so that ln y.r/ � w.r/, and (ii) f .r/ � �ˇ�.r/. In that case (6.25)
yields

ˇe .k/ � ˇe�.k/ � Qw.k/ � ˇe�.k/

1C nˇe�.k/
(6.74)

for the Fourier transform of the potential of mean force.
Another approximation closely related to the LDH one (6.73) is the MSA for soft

potentials. By a soft potential we refer to any function �.r/ satisfying the conditions

lim
r!0

rd�.r/ D 0 ; lim
r!1 rd�.r/ D 0 : (6.75)

While the second condition (meaning that the potential is sufficiently short ranged)
is quite general, the first condition actually defines the restricted class of soft
potentials. It includes bounded potentials (such as the Gaussian-core model [37]
or the PS model [38]), logarithmically diverging potentials [39], or even potentials
diverging algebraically as �.r/ 
 r�s with s < d. On the other hand, conventional
molecular models (such as HS, SW, SS, or LJ fluids) are excluded from the class of
potentials (6.75). A consequence of the conditions (6.75) is thate�.0/ D finite.

To derive the MSA for soft potentials, we first start from the identity h.r/ D
f .r/y.r/C y.r/� 1. Next, in the same spirit as the assumption (i) above, we assume
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(i’) f .r/y.r/ � f .r/, so that Qh.k/ � Qf .k/C Qw.k/. Insertion of (6.73) then yields

Qh.k/ � Qf .k/
1 � nQf .k/ : (6.76)

According to the OZ relation (4.27), the approximation (6.76) is equivalent to
Qc.k/ � Qf .k/. Going back to real space, c.r/ � f .r/. Finally, repeating the
assumption (ii) above, i.e., f .r/ � �ˇ�.r/, we get

MSA ) c.r/ D �ˇ�.r/ ) Qh.k/ D �ˇe�.k/
1C nˇe�.k/

: (6.77)

It must be noted that, in the MSA, the DCF is independent of density but differs from
its correct zero-density limit c.r/ ! f .r/ [see (6.57)]. The MSA c.r/ D �ˇ�.r/ is
also known as the random-phase approximation [40].

As said before, the MSA (6.77) has usually been applied to soft potentials [41].
For potentials with a hard core at r D � plus an attractive tail for r � � , the MSA
(6.77) is replaced by the double condition [40]

(

g.r/ D 0 ; r < � ;

c.r/ D �ˇ�.r/ ; r > � :
(6.78)

This version of the MSA is exactly solvable for Yukawa fluids [42, 43], which is
characterized by the interaction potential

�.r/ D
8

<

:

1 ; r < � ;

�K
e�z.r��/

r
; r > � :

(6.79)

6.9 Some Thermodynamic Consistency Relations
in Approximate Theories

As sketched in Fig. 4.12, an approximate RDF g.r/ does not guarantee thermody-
namic consistency among the different routes. However, there are a few cases where
either a partial consistency or a certain simple relationship may exist.
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6.9.1 Are the Virial-Route HNC and the Compressibility-Route
Percus–Yevick Values of the Fourth Virial Coefficient
Related?

As summarized in Fig. 6.1, the knowledge of the coefficients �k.r/ in the density
expansion of the cavity function allows one to obtain the virial coefficients Bk. In
general, unless the functions �k.r/ are exact, the virial coefficients Bk will depend
on the thermodynamic route followed. This is exemplified by Table 6.5 for the
fourth virial coefficient predicted by the HNC and PY approximations for a three-
dimensional HS fluid.

Here, we will consider an arbitrary potential and focus on the compressibility
route [see (4.29)] and the virial route [see (4.41)], denoting the corresponding virial
coefficients by B.c/k and B.v/k , respectively.

From Table 6.5 we can observe the simple relation B.HNC;v/
4 =B.PY;c/

4 D 3
2
. Is

that simple fractional number restricted to three-dimensional HSs? Does the ratio
B.HNC;v/
4 =B.PY;c/

4 depend on the dimensionality d of the system? Does it depend (in
general) on the temperature T and on the interaction potential �.r/? Do the answers
to the above questions depend on whether the system is a mixture or not? We will
see now that, quite interestingly, the simple relation

B.HNC;v/
4 .T/ D 3

2
B.PY;c/
4 .T/ (6.80)

turns out to hold regardless of the value of d, the form of �.r/, and the detailed
composition (one-component or multicomponent) of the system [44].

Let us start by writing again (6.36) for the virial route:

B.v/k .T/ D 1

2d

Z

dr �k.r/r
@f .r/

@r
: (6.81)

As for the compressibility route, from (4.29) one has

�T.n;T/ D 1C n
Z

dr fŒ f .r/C 1� y.r/� 1g

D 1C �T;2.T/n C �T;3.T/n
2 C �T;4.T/n

3 C � � � ; (6.82)

where

�T;2.T/ D
Z

dr f .r/ ; (6.83a)

�T;k.T/ D
Z

dr Œ f .r/C 1� �k.r/ ; k � 3 : (6.83b)
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Then, taking into account (1.39), we obtain

B.c/2 .T/ D �1
2
�T;2.T/ ; (6.84a)

B.c/3 .T/ D �1
3

�

�T;3.T/ � �2T;2.T/
�

; (6.84b)

B.c/4 .T/ D �1
4

�

�T;4.T/ � 2�T;2.T/�T;3.T/C �3T;2.T/
�

: (6.84c)

Let us now particularize to the HNC and PY approximations. Since �3.r/ is
exactly retained by those approximations (see second row of Table 6.4), the same
holds for the third virial coefficient B3, regardless of the thermodynamic route. On
the other hand, �.PY/

4 ¤ �
.HNC/
4 ¤ �

.exact/
4 (see third row of Table 6.4). Therefore, it

can be expected that

B.PY;v/
4 ¤ B.PY;c/

4 ¤ B.HNC;v/
4 ¤ B.HNC;c/

4 ¤ B.exact/
4 : (6.85)

In order to account for all possibilities (exact, HNC, and PY) for the function
�4.r/, let us construct a “tunable” function

(6.86)

in analogy with what was done in (6.69). The cases .�1; �2/ D .1; 1/, .1; 0/, and
.0; 0/ correspond to �.exact/

4 , �.HNC/
4 , and �.PY/

4 , respectively. Inserting (6.86) into
(6.81), one has

(6.87)

where a dashed line [not to be confused with the meaning of dotted lines in
(6.67) and (6.68)] denotes a factor r@f .r/=@r. By integrating by parts, the following
properties can be proved [44]:

(6.88a)

(6.88b)

(6.88c)
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Consequently,

(6.89)

In the case of the compressibility route, (6.83) yields

(6.90a)

(6.90b)

(6.90c)

where in (6.90c) use has been made of the property

(6.91)

Noting that

; (6.92)

and using (6.84c), we finally obtain

(6.93)

Comparison between (6.89) and (6.93) shows that

B.v/4

ˇ

ˇ

ˇ

�1D1;�2D 3�
2C�

D 3

2C �
B.c/4

ˇ

ˇ

ˇ

�1D�2D�
: (6.94)

In the case of the exact �4.r/ we have � D 1 in both sides of (6.94) and therefore
B.exact;v/
4 D B.exact;c/

4 , as expected. On the other hand, the choice � D 0 makes
the left- and right-hand sides correspond to the HNC and PY approximations,
respectively, and then (6.94) reduces to the sought result (6.80).

More in general, (6.94) implies that for any approximation of the class �1 D
�2 there exists a specific approximation of the class �1 D 1, such that the
compressibility and virial values, respectively, of B4 are proportional to each
other. The connection between both classes is schematically illustrated in Fig. 6.9.
Interestingly, the largest deviation of the proportionality factor from 1 occurs in the
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Fig. 6.9 The diagonal
(labeled c) and vertical
(labeled v) lines represent the
classes of approximations
�1 D �2 and �1 D 1,
respectively. The dashed tie
lines connect the pairs of
approximations whose
respective values of B.c/4 and

B
.v/
4 are related by (6.94)

Fig. 6.10 Temperature
dependence of the fourth
virial coefficient for the
three-dimensional PS fluid
[8]. The thick line represents
the exact results, while
B.PY;v/
4 , B.PY;c/

4 , B.PY;e/
4 ,

B.HNC;v/
4 , and B.HNC;c/

4 are
represented by the
dash-dotted, dashed, dotted
with crosses, dash-dot-dotted,
and dotted lines, respectively.
The circles represent the
values of 3

2
B.PY;c/
4 , which fall

on the B.HNC;v/
4 curve

case of the PY and HNC pair. The proof of (6.94) can be easily extended to mixtures
[44].

The simple relationship (6.80) is confirmed by analytical results for the three-
dimensional PS model [8] and for the one-dimensional PSW model [45]. For
instance, the temperature-dependence of B.exact/

4 , B.PY;v/
4 , B.PY;c/

4 , B.PY;e/
4 (energy

route), B.HNC;v/
4 D B.HNC;e/

4 , and B.HNC;c/
4 is displayed in Fig. 6.10 for the PS

fluid. As can be observed, the best approximation in the low-temperature regime
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Fig. 6.11 Temperature
dependence of the fourth
virial coefficient for the
three-dimensional SW fluid
with � 0=� D 3

2
[5]. The thick

line represents the exact
results, while B.PY;v/

4 , B.PY;c/
4 ,

B
.HNC;v/
4 , and B

.HNC;c/
4 are

represented by the
dash-dotted, dashed,
dash-dot-dotted, and dotted
lines, respectively. The circles
represent the values of
3
2
B.PY;c/
4 , which fall on the

B.HNC;v/
4 curve

(up to T� � kBT=" ' 0:71) is provided by B.PY;c/
4 . In the intermediate range

(0:71 . T� . 1:04), however, B.PY;v/
4 presents the best agreement. Finally, for

T� & 1:04 (not shown in Fig. 6.10) the best performance turns out to correspond to
B.HNC;v/
4 D B.HNC;e/

4 . What is especially interesting is that (6.80) is exactly verified.
As for the three-dimensional SW fluid, Fig. 6.11 shows numerical values [5]

describing the temperature-dependence of B.exact/
4 , B.PY;v/

4 , B.PY;c/
4 , B.HNC;v/

4 , and

B.HNC;c/
4 for the SW system with � 0=� D 3

2
. It can be observed that B.HNC;v/

4

and B.PY;c/
4 give the most accurate results for 1 . T� . 1:5 and T� & 1:5,

respectively. Moreover, both approximations are (within numerical uncertainties)
clearly consistent with (6.80), as expected.

6.9.2 Energy and Virial Routes in the Linearized
Debye–Hückel and Mean Spherical Approximations

As already said in Sect. 6.8.1, the energy and virial routes are fully equivalent in
the HNC approximation. Now we will see that the same property holds in the LDH
approximation (6.73) [46] and in the MSA (6.77) for soft potentials [47].



190 6 Density Expansion of the Radial Distribution Function and Approximate. . .

6.9.2.1 Linearized Debye–Hückel Approximation

We start by recalling the energy and virial routes (4.33) and (4.41), respectively. In
terms of the shifted cavity function w.r/ D y.r/ � 1, they are given by

uex � hEiex

N
D �n

2

Z

dr Œ1C w.r/�
@f .r/

@̌
; (6.95a)

Z � ˇp

n
D 1C n

2d

Z

dr Œ1C w.r/� r � rf .r/ : (6.95b)

The consistency condition between both routes is provided by the Maxwell
relation [see (1.38)]

n
@uex

@n
D @Z

@̌
: (6.96)

Given the mathematical identity

�
Z

dr f .r/ D 1

d

Z

dr r � rf .r/ ; (6.97)

the consistency condition (6.96) becomes

� @

@n

	

n
Z

dr w.r/
@f .r/

@̌

�

D 1

d

@

@̌

	Z

dr w.r/r � rf .r/

�

: (6.98)

Since the LDH approximation (6.73) is formulated in Fourier space, it is convenient
to express the spatial integrals in (6.98) as wavevector integrals:

@

@n

"

n
Z

dk Qw.k/@
Qf .k/
@̌

#

D 1

d

@

@̌

�Z

dk Qw.k/rk � �kQf .k/�
�

: (6.99)

We now make use of the mathematical identity

@

@̌

˚ Qw .k/rk � �kQf .k/� D k �
"

@ Qw .k/
@̌

rk Qf .k/ � @Qf .k/
@̌

rk Qw .k/
#

Cd
@ Qw .k/
@̌

Qf .k/C rk �
"

k Qw .k/ @
Qf .k/
@̌

#

(6.100)
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to rewrite (6.99) as

@

@n

"

n
Z

dk Qw .k/ @Qf .k/
@̌

#

D 1

d

Z

dk k �
"

@ Qw .k/
@̌

rkQf .k/ � @Qf .k/
@̌

rk Qw .k/
#

C
Z

dk
@ Qw .k/
@̌

Qf .k/ : (6.101)

It must be emphasized that no approximations have been carried out so far. There-
fore, any Qw.k/ satisfying condition (6.101) gives thermodynamically consistent
results via the energy and virial routes.

Let us suppose a closure relation of the form

Qw.k/ D n�1wŒnQf .k/� ; wŒz� D arbitrary : (6.102)

This implies the relations

@

@n
Œn Qw .k/� D w1ŒnQf .k/� Qf .k/ ; (6.103a)

@ Qw .k/
@̌

D w1ŒnQf .k/�@Qf .k/
@̌

; (6.103b)

rk Qw .k/ D w1ŒnQf .k/�rk Qf .k/ ; (6.103c)

where w1Œz� � dwŒz�=dz. It is then straightforward to check that the energy-virial
consistency condition (6.101) is identically satisfied.

As a corollary, the LDH approximation (6.73) belongs to the scaling class (6.102)
with the particular choice wŒz� D z2=.1 � z/, what closes the proof.

6.9.2.2 Mean Spherical Approximation for Soft Potentials

The proof in the case of the MSA (6.77) follows along similar lines [47]. Now,
instead of (6.95), we start from the energy and virial routes (4.32) and (4.40),
respectively, written as

uex D n

2

Z

dr Œ1C h.r/�
@ Œˇ�.r/�

@̌
; (6.104a)

Z D 1� n

2d

Z

dr Œ1C h.r/� r � r Œˇ�.r/� : (6.104b)

We observe that (6.95) becomes (6.104) with the formal changes w.r/ ! h.r/
and f .r/ ! �ˇ�.r/. Since all the steps leading from (6.96) to (6.101) are purely
technical, it is clear that we obtain a consistency condition analogous to (6.101),
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except for the formal changes Qw.k/ ! Qh.k/ and Qf .k/ ! �ˇe�.k/. Consequently,
that consistency condition is automatically satisfied by closures of the form

Qh.k/ D n�1hŒ�nˇe�.k/� ; hŒz� D arbitrary : (6.105)

As shown in (6.77), the MSA for soft potentials belongs to that class of closures
with the particular choice hŒz� D z=.1 � z/.

6.9.2.3 The Free-Energy Route

As we saw in Sect. 4.5.5, the free-energy route (4.56) or (4.57) includes the energy
and virial routes as just two particular choices of the protocol �.�/.r/: the energy
scaling (4.58) for the energy route and the spatial scaling (4.61) for the virial
route. Given that these two routes are thermodynamically equivalent in the LDH
approximation and in the MSA for soft potentials, one can wonder whether that
equivalence extends to any protocol. In other words, is the Helmholtz free energy
obtained through (4.56) or (4.57) independent of the protocol choice? As we will
see, the answer is indeed affirmative for the classes of approximations (6.102) and
(6.105), which include the LDH approximation and the MSA for soft potentials,
respectively.

Let us start by rewriting (4.57) in the form

ˇaex D �n

2

Z 1

0

d�
Z

dr
@f .�/.r/

@�

�

1C w.�/.r/
�

D �n

2
Qf .0/� n

2

Z

dk
.2�/d

Z 1

0

d� Qw.�/.k/@
Qf .�/.k/
@�

: (6.106)

Now we assume approximations of the class (6.102), i.e., Qw.�/.k/ D n�1wŒnQf .�/.k/�,
and introduce the function

w0Œz� �
Z z

0

dz0 wŒz0� : (6.107)

Then, the formally exact expression (6.106) becomes

ˇaex D �n

2
Qf .0/� 1

2n

Z

dk
.2�/d

w0ŒnQf .k/� : (6.108)

As anticipated, the final result is independent of the specific protocol �.�/.r/
chosen. In the particular case of the LDH approximation, wŒz�Dz2=.1�z/ ) w0Œz�
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D �z.1C z=2/� ln.1 � z/, so that

ˇaex D � n

2
Qf .0/C 1

2n

Z

dk
.2�/d

(

nQf .k/
"

1C nQf .k/
2

#

C ln
�

1 � nQf .k/�
)

; .LDH/ : (6.109)

From the thermodynamic relations (1.36) it is straightforward to obtain

uex D � n

2

@Qf .0/
@ˇ

� 1

2

Z

dk
.2�/d

�

nQf .k/�2
1 � nQf .k/

@Qf .k/
@ˇ

; .LDH/ ; (6.110a)

Z D 1 � n

2
Qf .0/ � 1

2n

Z

dk
.2�/d

(

nQf .k/
"

1

1 � nQf .k/ � nQf .k/
2

#

C ln
�

1 � nQf .k/�
)

;

.LDH/ ; (6.110b)

ˇ�ex D �nQf .0/� 1

2n

Z

dk
.2�/d

�

nQf .k/�3
1 � nQf .k/ ; .LDH/ : (6.110c)

A similar conclusion holds for the class (6.105). First, in analogy with (6.106),
we rewrite (4.56) as

ˇaex D n

2

Z 1

0

d�
Z

dr
@̌ �.�/.r/

@�

�

1C h.�/.r/
�

D n

2
ˇe�.0/C n

2

Z

dk
.2�/d

Z 1

0

d� Qh.�/.k/ @̌
e�.�/.k/

@�
: (6.111)

As before, notice the formal analogy between (6.106) and (6.111) under the
replacements Qw.k/ $ Qh.k/ and Qf .k/ $ �ˇe�.k/. Consequently, approximations
belonging to the class (6.105) yield, regardless of the protocol,

ˇaex D n

2
ˇe�.0/� 1

2n

Z

dk
.2�/d

h0Œ�nˇe�.k/� ; (6.112)

where

h0Œz� �
Z z

0

dz0 hŒz0� : (6.113)
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In the MSA, hŒz� D z=.1 � z/ ) h0Œz� D �z � ln.1 � z/, so that

ˇaex D n

2
ˇe�.0/� 1

2n

Z

dk
.2�/d

˚

nˇe�.k/� ln
�

1C nˇe�.k/
�

; .MSA/ :

(6.114)
Again, use of (1.36) yields

ˇuex D n

2
ˇe�.0/� 1

2n

Z

dk
.2�/d

�

nˇe�.k/
�2

1C nˇe�.k/
; .MSA/ ; (6.115a)

Z D 1C n

2
ˇe�.0/C 1

2n

Z

dk
.2�/d

�

nˇe�.k/

1C nˇe�.k/
� ln

�

1C nˇe�.k/
�

�

;

.MSA/ ; (6.115b)

ˇ�ex D nˇe�.0/ � 1

2n

Z

dk
.2�/d

�

nˇe�.k/
�2

1C nˇe�.k/
; .MSA/ : (6.115c)

6.9.3 “Energy” Route in Hard-Sphere Liquids

We saw in (4.87) that the energy route is useless for HSs. In fact, the consistency
condition (6.96) is trivially satisfied since

n
@uex

HS

@n
D 0 ;

@ZHS

@̌
D 0 : (6.116)

The last equality expresses the fact that the HS compressibility factor

ZHS.�/ D 1C 2d�1�yHS.� I �/ (6.117)

is independent of temperature. Thus, there is no possibility of extracting non-trivial
thermodynamic information from the energy route in the case of HSs.

However, a physical meaning can be ascribed if first the energy route is applied
to a non-HS system that includes the HS one as a special case and then the HS limit
is taken.

Let us take the SS potential (see Table 3.1) as a convenient choice of a non-HS
potential. It has the interesting property of reducing to the HS potential in three
independent limits:

lim
ˇ"!0

�SS.r/ D �HS.r/ (diameter �) ; (6.118a)

lim
ˇ"!1�SS.r/ D �HS.r/ (diameter � 0) ; (6.118b)

lim
� 0!�

�SS.r/ D �HS.r/ (diameter � 0 D �) : (6.118c)
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It also reduces to the PS potential (see again Table 3.1) in the limit � ! 0 and, from
it, to the HS potential in the limit " ! 1:

lim
�!0

�SS.r/ D �PS.r/ (diameter � 0) ; (6.119a)

lim
ˇ"!1 �PS.r/ D �HS.r/ (diameter � 0) : (6.119b)

The limits (6.118) and (6.119) are illustrated in Figs. 6.12 and 6.13. They are
represented in Fig. 6.13 by the paths A, B, C, D, and D’, respectively.

Suppose now that an approximate cavity function ySS.rI n; ˇ/ is known (for
instance, as the solution to an integral equation) for the SS fluid. Then, the energy
route (4.33) gives (at a certain point P in Fig. 6.13)

uex
SS.n; ˇ/ D d2d�1vdn"e�ˇ"

Z � 0

�

dr rd�1ySS.rI n; ˇ/ : (6.120)

The associated energy-route compressibility factor is obtained from (6.96) as

ZSS.n; ˇ/ � ZHS.n�
d/ D n

@

@n

Z ˇ

0

dˇ0 uex
SS.n; ˇ

0/

D d2d�1vdn"
@

@n
n
Z ˇ

0

dˇ0 e�ˇ0"

Z � 0

�

dr rd�1ySS.rI n; ˇ0/ ;

(6.121)

where in the first step the integration constant has been fixed by the physical
condition (6.118a), while (6.120) has been used in the second step. Note that

Fig. 6.12 Graphical representation of the limits (6.118) and (6.119)
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Fig. 6.13 Parameter space
for SS fluids. The plane
�=� 0 D 0 represents PS
fluids (of diameter � 0), the
plane e�ˇ" D 0 corresponds
to HS fluids of diameter � 0,
and the planes e�ˇ" D 1 and
�=� 0 D 1 define HS fluids of
diameter � . Starting from a
given SS fluid (represented by
point P), it is possible to go to
the HS fluid at the same
density by following different
paths
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(6.121) gives the difference between the compressibility factors at points P and P1
of Fig. 6.13 in terms of the SS cavity function along path A.

Next, we take the limit ˇ" ! 1 on both sides of (6.121), apply (6.118b), and
divide both sides of the equation by n� 0d � n�d. The result is

ZHS.n� 0d/ � ZHS.n�d/

n� 0d � n�d
D d2d�1vd"

� 0d � �d

@

@n
n
Z 1

0

dˇ e�ˇ"
Z � 0

�

dr rd�1ySS.rI n; ˇ/ :

(6.122)

This corresponds to moving point P to point P2 along path B.
Finally, we take the limit � 0 ! � , i.e., we move points P1 and P2 to points Q1

and Q2 along paths A’ and B’, respectively. The left-hand side of (6.122) becomes

lim
� 0!�

ZHS.n� 0d/� ZHS.n�d/

n� 0d � n�d
D ��d @

@n
ZHS.n�

d/ : (6.123)

Moreover, the spatial integral on the right-hand side of (6.122) reduces to

lim
� 0!�

1

� 0d � �d

Z � 0

�

dr rd�1ySS.rI n; ˇ/ D 1

d
yHS.� I n�d/ ; (6.124)

where the third limit (6.118c) has been used (path C for any point P). Taking into
account (6.123) and (6.124) in (6.122), one gets

@

@n
ZHS.n�

d/ D 2d�1vd
@

@n
n�dyHS.� I n�d/ : (6.125)
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Fig. 6.14 Scheme of the steps followed to derive (6.117) starting from (6.120)

Integration over density and application of the ideal-gas boundary condition
ZHS.0/ D 1 yields (6.117), which is not but the virial EoS! The generalization
to mixtures follows essentially the same steps [48].

In summary, the ill definition of the energy route to the EoS of HSs can be
avoided by first considering a SS fluid and then taking the limit of a vanishing
shoulder width. The resulting EoS coincides exactly with the one obtained through
the virial route. This applies regardless of the approximation followed to describe
the SS and HS fluids. From that point of view, the energy and virial routes to the
EoS of HS fluids can be considered as equivalent. Figure 6.14 presents a scheme of
the energy route ! virial route path.

It must be emphasized that the application of the three limits (6.118) is essential
to derive (6.117) from (6.120) [49]. For instance, if the limit � ! 0 (instead of
� 0 ! �) is taken in (6.122) (i.e., points P1 and P2 are moved along paths parallel to
path D of Fig. 6.13), the result is

ZHS.n�
0d/ D 1C d2d�1nvd"

@

@n
n
Z 1

0

dˇ e�ˇ"
Z � 0

0

dr rd�1yPS.rI n; ˇ/ ; (6.126)

where the change ySS ! yPS is a consequence of (6.119a). Equation (6.126) is an
alternative recipe to obtain the HS EoS from the energy route applied to PSs. In
general, it gives a result different from (6.117) when an approximate cavity function
yPS is used. For instance, in the PY approximation for three-dimensional systems,
(6.117) gives a (rescaled) fourth virial coefficient bHS

4 D 16 (see Table 6.5), while
(6.126) gives the rather poor result bHS

4 D 1 814=175' 10:37 [8, 49].

Exercises

6.1 Derive (6.6) and (6.7).

6.2 Check the correctness of (6.11) and (6.14)

6.3 Check (6.16).
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6.4 Check (6.18).

6.5 Check (6.21).

6.6 Check (6.29).

6.7 Derive (6.31).

6.8 Check that (6.32) results from (6.31) and (3.81a).

6.9 Obtain (6.33c).

6.10 Obtain (6.41).

6.11 Make use of the property (6.35) and of the HS expressions (6.28b) and (6.33)
to find y.�/ andeS.0/ for the PS model to second order in density. Next, obtain the
first four virial coefficients from the virial and compressibility routes. (In case of
need, consult [8].)

6.12 Check that (6.42) is obtained from (6.41) by application of the compressibility
[see (4.29)] and virial [see (4.88)] routes.

6.13 Check (6.51).

6.14 Taking into account (6.51), prove that (6.52) is indeed satisfied to order n3.

6.15 Check (6.56).

6.16 Check that the HNC closure (6.64) and the PY closure (6.65) are equivalent
to

c.r/ D y.r/f .r/C y.r/� 1 � ln y.r/ ; .HNC/ ;

c.r/ D y.r/f .r/ ; .PY/ ;

when expressed in terms of the DCF c.r/ and the cavity function y.r/.

6.17 Check that the HNC closure (6.64) and the PY closure (6.65) are equivalent
to

y.r/ D e�.r/ ; .HNC/ ;

y.r/ D 1C �.r/ ; .PY/ ;

when expressed in terms of the indirect correlation function �.r/ [see (6.71)] and
the cavity function y.r/.

6.18 Check (6.68).

6.19 Obtain (6.69).

6.20 Check that (6.70) is obtained from (6.69) by application of the compressibility
[see (4.29)] and virial [see (4.88)] routes.
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6.21 Find the value of the factor � that makes both routes in (6.70) be consistent to
each other. What is the value of the “consistent” coefficient b4? How does it compare
with the exact value of b4 (see Table 3.11)?

6.22 Using (6.61), check that a closure relation of the form B.r/ D BapprŒ�.r/� is
equivalent to

ln y.r/ D �.r/C BapprŒ�.r/� :

6.23 Check that all the closure relations of Table 6.6 give B.r/ � �AŒ�.r/�2 in
the limit �.r/ ! 0 and find the value of the coefficient A in each case. Taking into
account that �.r/ D O.n/ [compare (6.54) and (6.57)], this implies that B.r/ D
O.n2/, in agreement with (6.46).

6.24 Check that the Rogers–Young closure [see Table 6.6] reduces to the PY and
HNC closures in the limits aRY ! 0 and aRY ! 1, respectively.

6.25 Check that the Ballone–Pastore–Galli–Gazzillo closure [see Table 6.6]
reduces to the HNC and Martynov–Sarkisov closures in the limits aBPGG ! 1

and aBPGG ! 2, respectively.

6.26 Derive (6.74).

6.27 Check (6.83) and (6.84).

6.28 With the help of the Appendix of [44], prove (6.88).

6.29 Derive (6.90).

6.30 Check (6.92)–(6.94).

6.31 Following the steps described in [44], generalize (6.94) to mixtures.

6.32 Derive (6.97) by integrating by parts the right-hand side.

6.33 Derive (6.98) and (6.99).

6.34 Check (6.100).

6.35 Check (6.103).

6.36 Derive (6.106) and (6.108).

6.37 Derive (6.110) from (6.109) and (6.115) from (6.114)

6.38 Check that (6.110) and (6.115) are consistent with the Maxwell relation (6.96).

6.39 Derive (6.120).

6.40 Check (6.123) and (6.124).

6.41 Check (6.126).
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Chapter 7
Exact Solution of the Percus–Yevick
Approximation for Hard Spheres . . . and Beyond

One of the milestones of the statistical-mechanical theory of liquids in equilibrium
was the exact analytical solution of the Percus–Yevick integral equation for three-
dimensional hard spheres by, independently, Wertheim and Thiele in 1963 [1–4].
The solution was later extended to mixtures [5, 6], hard hyperspheres in odd
dimensions [7, 8], and sticky hard spheres [9–12]. This chapter presents some
of those solutions within the framework of the rational-function approximation
[13–15], which lends itself to generalizations beyond the Percus–Yevick approxi-
mation.

7.1 Introduction

Particularized to d D 3, the OZ relation (4.26) can be written as

rh.r/ D rc.r/C 2�n
Z 1

0

dr0 r0c.r0/
Z rCr0

jr�r0j
dr00 r00h.r00/ ; (7.1)

where bipolar coordinates have been used. In the HS case, one necessarily has
g.r/ D 0 for r < � . Moreover, the PY closure (6.65) implies that c.r/ D 0 for
r > � . Thus, the mathematical problem consists in solving (7.1) subject to the
boundary conditions

(

g.r/ D 0 ; r < � (exact hard-core condition) ;

c.r/ D 0 ; r > � (PY approximation for HSs) :
(7.2)

Despite the apparent formidable difficulty of (7.1) with the boundary conditions
(7.2), Wertheim (see Fig. 7.1) [2, 4] and, independently, Thiele [3] were able to find
an exact solution by analytical means. The solution relies on the use of Laplace

© Springer International Publishing Switzerland 2016
A. Santos, A Concise Course on the Theory of Classical Liquids,
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Fig. 7.1 Michael Stephen
Wertheim (b. 1931)
(Photograph courtesy of M.S.
Wertheim)

transforms, as suggested by the structure of (7.1), and stringent analytical properties
of entire functions of complex variable. The interested reader is referred to [1–4] for
further details.

In this chapter, however, we will follow an alternative method [13–16] that does
not make explicit use of (7.2) and admits extensions and generalizations.

7.2 An Alternative Approach: The Rational-Function
Approximation

The main steps we will follow are the following ones:

1. Introduce the Laplace transformbG.s/ of rg.r/.
2. Define an auxiliary functionbF.s/ directly related to bG.s/.
3. Find the exact properties ofbF.s/ for small s and for large s.
4. Propose a rational-function approximation (RFA) for bF.s/ satisfying the

previous exact properties.

As will be seen, the simplest approximation (i.e., the one with the least
number of parameters) directly yields the PY solution. Furthermore, the next-order
approximation contains two free parameters which can be determined by prescribing
a given EoS and thermodynamic consistency between the virial and compressibility
routes.

The same approach can be extended to mixtures, to other related systems with
piecewise-constant potentials, and to higher dimensionalities with d D odd.

We now proceed with the four steps described above.
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7.2.1 Introduction of bG.s/

Let us introduce the Laplace transform of rg.r/:

bG.s/ D L Œrg.r/� .s/ D
Z 1

0

dr e�srrg.r/ : (7.3)

Note that in the one-dimensional case bG.s/ was defined in (5.8) as L Œg.r/� .s/. In
the three-dimensional case, the choice of rg.r/ instead of g.r/ as the function to be
Laplace transformed is suggested by the structure of (7.1) and also by the link of
bG.s/ to the Fourier transform Qh.k/ of the total correlation function h.r/ D g.r/ � 1

and hence to the structure factoreS.k/ D 1C nQh.k/:

Qh.k/ D �2�
"

bH.s/ � bH.�s/

s

#

sDik

D �2�
"

bG.s/ �bG.�s/

s

#

sDik

; (7.4)

where

bH.s/ D bG.s/ � s�2 (7.5)

is the Laplace transform of rh.r/. Had we defined bG.s/ as the Laplace transform
of g.r/, (7.4) would have involved the derivative bG0.s/, what would be far less
convenient.

In the more general case of d D odd � 3, it can be seen that the right choice for
bG.s/ is [17]

bG.s/ D
Z 1

0

dr e�sr d�3
2
.sr/rg.r/ ; (7.6)

where

k.x/ D
k
X

jD0

.2k � j/Š

2k�j.k � j/ŠjŠ
xj (7.7)

is a so-called reverse Bessel polynomial [18]. It is related to the spherical Bessel
function of the first kind, jk.x/, by

jk.x/ �
r

�

2x
JkC1=2.x/ D k.�ix/eix � k.ix/e�ix

2ixkC1 : (7.8)



206 7 Exact Solution of the Percus–Yevick Approximation for Hard Spheres . . . and. . .

In this case d D odd � 3, (7.4) becomes

Qh.k/ D .�2�/.d�1/=2
"

bH.s/ � bH.�s/

sd�2

#

sDik

D .�2�/.d�1/=2
"

bG.s/ �bG.�s/

sd�2

#

sDik

;

(7.9)

where

bH.s/ D bG.s/� .d � 2/ŠŠs�2 (7.10)

is defined as in (7.6), except for the replacement g.r/ ! h.r/, and, as usual, the
double factorial is defined as kŠŠ D QŒk=2��1

iD0 .k � 2i/ with the convention 0ŠŠ D 1,
Œk=2� denoting the integer part of k=2.

7.2.2 Definition of bF.s/

Henceforth we return to the three-dimensional case (d D 3) and, for simplicity, we
take � D 1 as the unit length. Taking (6.23a) and (6.28b) into account, the HS RDF
to first order in density is

g.r/ D �.r � 1/
h

1C�.2 � r/ .r � 2/2

 r

2
C 2

�

�C � � �
i

; (7.11)

where we recall that � D �
6

n�3 is the packing fraction. To that order, the Laplace
transform of rg.r/ is given by

s�1
bG.s/ D

h

bF0.s/CbF1.s/�
i

e�s � 12�
h

bF0.s/
i2

e�2s C � � � ; (7.12)

where

bF0.s/ D s�2 C s�3 ; (7.13a)

bF1.s/ D 5

2
s�2 � 2s�3 � 6s�4 C 12s�5 C 12s�6 : (7.13b)

The exact form (7.12) of bG.s/ to order � suggests the definition of an auxiliary
functionbF.s/ through

s�1
bG.s/ D bF.s/e�s � 12�

h

bF.s/
i2

e�2s C .12�/2
h

bF.s/
i3

e�3s � � � �

D bF.s/e�s

1C 12�bF.s/e�s
: (7.14)
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Equivalently,

bF.s/ � es s�1
bG.s/

1 � 12�s�1bG.s/
: (7.15)

Of course,bF.s/ depends on �. To first order,

bF.s/ D bF0.s/CbF1.s/�C � � � ; (7.16)

withbF0.s/ andbF1.s/ given by (7.13).
In analogy with the one-dimensional case [see (5.61)], the introduction of bF.s/

allows one to express g.r/ as a succession of shells (1 < r < 2, 2 < r < 3, . . . ) in a
natural way. First, according to (7.14),

bG.s/ D
1
X

`D1
.�12�/`�1 s

h

bF.s/
i`

e�`s : (7.17)

Then, Laplace inversion term by term gives

g.r/ D 1

r

1
X

`D1
.�12�/`�1 N�`.r � `/�.r � `/ ; (7.18)

where

N�`.r/ D L �1
	

s
h

bF.s/
i`
�

.r/ : (7.19)

7.2.3 Exact Properties of bF.s/ for Small s and Large s

In order to derive the exact behavior of bG.s/ for large s, we need to start from the
behavior of g.r/ for r & 1:

g.r/ D �.r � 1/

	

g.1C/C g0.1C/.r � 1/C 1

2
g00.1C/.r � 1/2 C � � �

�

: (7.20)

In Laplace space,

ses
bG.s/ D g.1C/C �

g.1C/C g0.1C/
�

s�1 C O.s�2/ : (7.21)
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Therefore, according to (7.15),

bF.s/ D g.1C/s�2 C �

g.1C/C g0.1C/
�

s�3 C O.s�4/ : (7.22)

In particular,

lim
s!1 s2bF.s/ D g.1C/ D finite : (7.23)

Thus, we see thatbF.s/ must necessarily behave as s�2 for large s.
Now we turn to the small-s behavior. Let us expand the Laplace transform of

rh.r/ in powers of s:

bH.s/ D bH.0/ C bH.1/s C � � � ; (7.24)

where

bH.k/ � .�1/k
Z 1

0

dr rkC1h.r/ : (7.25)

In particular, bH.1/ is directly related to the isothermal compressibility [see (4.29)]:

�T D 1C nQh.0/ D 1 � 24�bH.1/ : (7.26)

Since �T must be finite, and recalling (7.5), we find

s2bG.s/ D 1C 0 � s C bH.0/s2 C bH.1/s3 C O.s4/ : (7.27)

Therefore, from (7.15) the small-s behavior ofbF.s/ is found to be

es

bF.s/
D �12�C s

bG.s/

D �12�C 0 � s C 0 � s2 C 1 � s3 C 0 � s4 � bH.0/s5 � bH.1/s6 C O.s7/ :

(7.28)

Thus, just the condition �T D finite univocally fixes the first five coefficients in the
power series expansion ofbF.s/. More specifically,

bF.s/ D � 1

12�

	

1C s C s2

2
C 1C 2�

12�
s3 C 1C �=2

12�
s4
�

C O.s5/ : (7.29)
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7.2.4 Construction of the Approximation: Percus–Yevick
Solution

Thus far, all the preceding results are formally exact. To recapitulate, we have
defined the Laplace transformbG.s/ in (7.3) and the auxiliary functionbF.s/ in (7.15).
This latter function must comply with the two basic requirements (7.23) and (7.29).

A simple way of satisfying both conditions is by means of a rational-function
form:

bF.s/ D Polynomial in s of degree k

Polynomial in s of degree k C 2
(7.30)

with 2k C 3 � 5 ) k � 1. The simplest RFA corresponds to k D 1:

bF.s/ D � 1

12�

1C L.1/s

1C S.1/s C S.2/s2 C S.3/s3
; (7.31)

where the coefficients are determined from (7.29). They are

L.1/ D 1C �=2

1C 2�
; (7.32a)

S.1/ D �3
2

�

1C 2�
; S.2/ D �1

2

1 � �

1C 2�
; S.3/ D � 1

12�

.1 � �/2
1C 2�

: (7.32b)

The rational function (7.31) can also be rewritten as

bF.s/ D �.0/ C�.1/s

�3s3 � 12�
��

1 � �s C 1
2
�2s2

�

�.0/ C s .1 � �s/ �.1/
� ; (7.33)

where

�.0/ D 1C 2�

.1 � �/2 ; �.1/ D �
1C �=2

.1 � �/2 ; (7.34)

and, for later convenience, we have considered an arbitrary length unit (i.e., not
necessarily � D 1). Inserting (7.33) into (7.14), it is possible to expressbG.s/ as

bG.s/ D e��s

s2
�.0/ C�.1/s

1 � 2�n
�

'2.�s/�3�.0/ C '1.�s/�2�.1/
� ; (7.35)
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where

'k.x/ � x�.kC1/
 

k
X

`D0

.�x/`

`Š
� e�x

!

: (7.36)

Note that limx!0 'k.x/ D .�1/k=.k C 1/Š.

7.2.4.1 Structural Properties

OncebF.s/ and hence bG.s/ have been completely determined by the approximation
(7.31), it is easy to go back to real space (here again we assume the length unit
� D 1) and obtain the corresponding RDF g.r/. Three alternative ways are possible.
First, one can invert numerically the Laplace transform bG.s/ by means of efficient
algorithms [19]. A second method consists in obtaining Qh.k/ from (7.4) and then
performing a numerical Fourier inversion. The third method is purely analytical and
is based on (7.18) and (7.19). From a practical point of view, one is interested in
determining g.r/ up to a certain distance rmax since g.r/ ! 1 for large distances.
In that case, the summation in (7.18) can be truncated for ` > rmax [20]. To obtain
N�`.r/ from (7.19) and (7.31) one only needs the three roots fsi; i D 1; 2; 3g of the

cubic equation 1C S.1/s C S.2/s2C S.3/s3 D 0 and to apply the residue theorem, i.e.,

N�`.r/ D
X̀

jD1

P3
iD1 a.i/`j esir

.` � j/Š.j � 1/Š r
`�j ; (7.37a)

a.i/`j D lim
s!si

�

@

@s

�j�1 �
s
h

.s � si/bF.s/
i`
�

: (7.37b)

This method is analogous to the one followed for the one-dimensional systems in
(5.53), (5.61), and (5.73). The values at contact are simply obtained from (7.22) as

g.1C/ D � 1

12�

L.1/

S.3/
D 1C �=2

.1 � �/2
; (7.38a)

g0.1C/ D � 1

12�S.3/

	

1 � L.1/
�

1C S.2/

S.3/

��

D �9
2

�.1C �/

.1 � �/3 : (7.38b)
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As for the structure factor, application of (4.24) and (7.4) yields the explicit
expression

1

eS.k/
D 1C 72�2.2C �/2

.1 � �/4 k�4 C 288�2.1C 2�/2

.1 � �/4 k�6 �
	

12�.2C �/

.1 � �/2
k�2

C72�2.2 � 4�� 7�2/
.1 � �/4

k�4 C 288�2.1C 2�/2

.1 � �/4
k�6

�

cos k

C
	

24�.1� 5�� 5�2/

.1 � �/3
k�3 � 288�2.1C 2�/2

.1 � �/4
k�5

�

sin k : (7.39)

To complete the description of the structural properties stemming from the
approximation (7.31), let us consider the DCF c.r/. Its Fourier transform is
obtained from Qh.k/ via the OZ relation (4.27). The inverse Fourier transform can
be performed analytically with the result

c.r/ D

8

ˆ

<

ˆ

:

� .1C 2�/2

.1 � �/4 C 6�.1C �=2/2

.1 � �/4
r � �.1C 2�/2

2.1� �/4 r3 ; r < 1 ;

0 ; r > 1 :
(7.40)

We observe that c.r/ D 0 for r > 1. But this is precisely the signature of the PY
approximation for HSs [see (7.2)]. This shows that the simplest realization (7.31) of
the RFA (7.30) turns out to coincide with the exact PY solution.

Figures 7.2, 7.3, and 7.4 display the PY functions g.r/, c.r/, andeS.k/, respec-
tively, at several densities.

Fig. 7.2 RDF of a
three-dimensional HS fluid,
as obtained from the PY
approximation, at several
values of the packing
fraction:
� � .�=6/n�3 D 0:05, 0:1,
0:2, 0:3, 0:4, and 0:5
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Fig. 7.3 DCF of a
three-dimensional HS fluid,
as obtained from the PY
approximation, at several
values of the packing
fraction:
� � .�=6/n�3 D 0:05, 0:1,
0:2, 0:3, 0:4, and 0:5

Fig. 7.4 Structure factor of a
three-dimensional HS fluid,
as obtained from the PY
approximation, at several
values of the packing
fraction:
� � .�=6/n�3 D 0:05, 0:1,
0:2, 0:3, 0:4, and 0:5

7.2.4.2 Equation of State

Once bG.s/ is fully determined, one can easily obtain the EoS. As expected, the
result depends on the thermodynamic route employed. Let us start with the virial
route. According to (6.117), the virial route in the three-dimensional case is

Z.v/ D 1C 4�g.1C/ : (7.41)
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From the contact value (7.38a) one immediately obtains

Z.v/PY D 1C 2�C 3�2

.1 � �/2
: (7.42)

In the case of the compressibility route, (7.26) shows that we need to determine
bH.1/. This quantity is evaluated from the coefficient of s6 in the Taylor expansion of
es=bF.s/, as shown in (7.28). The result is

bH.1/ D 8 � 2�C 4�2 � �3

24.1C 2�/2
: (7.43)

Insertion into (7.26) yields

�T;PY D .1 � �/4

.1C 2�/2
(compressibility route) : (7.44)

The associated compressibility factor is obtained upon integration [see (1.39)] as

Z.c/PY D
Z 1

0

dt

�T;PY.�t/
D 1C �C �2

.1� �/3
: (7.45)

This expression turns out to coincide with the SPT EoS [21–23] [see (3.115)].
Finally, we consider the chemical-potential EoS. In the three-dimensional one-

component case, (4.92) gives

ˇ�ex D � ln.1 � �/C 24�

Z 1

1
2

d�01�201g01.�
C
01/ (� route) : (7.46)

We see that the contact value (7.38a) is not enough to compute �ex. We need
to “borrow” the solute–solvent contact value g01.�

C
01/ from the PY solution for

mixtures [5]:

g01.�
C
01/ D 1

1 � � C 3

2

�

.1 � �/2

�

2 � 1

�01

�

: (7.47)

This expression is exact if �01 D 1
2

[24] and reduces to (7.38a) if �01 D 1.
Performing the integration in (7.46), one finds

ˇ�ex
PY D �

7C �=2

.1 � �/2 � ln.1� �/ (� route) : (7.48)
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The excess free energy per particle consistent with (7.48) is obtained, taking into
account the thermodynamic relation (1.36c), as

ˇaex
PY D

Z 1

0

dtˇ�ex
PY.�t/ D 3

2

6 � �

1 � �
C 9 � �

�
ln.1 � �/ (� route) : (7.49)

Then, the EoS is derived from the thermodynamic relation (1.36b) with the result

Z.�/PY D �81 � 31�=16
.1 � �/2 � 9

�
ln.1 � �/ : (7.50)

While the virial and compressibility EoS (7.42) and (7.45), respectively, are known
since 1963 [3], the chemical-potential EoS (7.50) seems to have remained hidden
until much later [24].

Interestingly, the CS EoS [see (3.113)] can be recovered as an interpolation
between the PY virial and compressibility equations:

ZCS D 1

3
Z.v/PY C 2

3
Z.c/PY : (7.51)

The most relevant thermodynamic quantities corresponding to each route as
obtained from the PY solution, as well as from the CS EoS, are summarized in
Table 7.1.

Table 7.1 Main thermodynamic quantities as obtained from the PY solution for HS fluids via
different routes

Route ˇaex ˇ�ex Z ��1
T

v 6�

1� �

2�.5� 2�/

.1� �/2
1C 2�C 3�2

.1� �/2
1C 5�C 9�2 � 3�3

.1� �/3

C2 ln.1� �/ C2 ln.1� �/

c 3�.2� �/

2.1� �/2
�.14� 13�C 5�2/

2.1� �/3
1C �C �2

.1� �/3
.1C 2�/2

.1� �/4

� ln.1� �/ � ln.1� �/

� 3.6� �/

2.1� �/

�.14C �/

2.1� �/2
� 16� 31�

2.1� �/2
1C 5�C 9�2

.1� �/3

C .9� �/

�
ln.1� �/ � ln.1� �/ � 9

�
ln.1� �/

CS �.4� 3�/

.1� �/
2

�.8� 9�C 3�2/

.1� �/3
1C �C �2 � �3

.1� �/3
1C 4�C 4�2 � 4�3 C �4

.1� �/4
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Table 7.2 First twelve (reduced) virial coefficients bk as obtained exactly and from several EoS
related to the PY approximation

k Exact Z.v/PY Z.c/PY Z.�/PY ZCS Z.�c;1/ Z.�c;2/

2 4 4 4 4 4 4 4

3 10 10 10 10 10 10 10

4 18:364 768 � � � 16 19 67

4
D 16:75 18

181

10
D 18:1

145

8
D 18:125

5 28:224 376.15/ 22 31 119

5
D 23:8

28 703

25
D 28:12

141

5
D 28:2

6 39:815 23.10/ 28 46 31 40 40 241

6
' 40:2

7 53:342 1.5/ 34 64 268

7
' 38:3

54 376

7
' 53:7

54

8 68:529.3/ 40 85 365

8
D 45:6

70 277

4
D 69:25

1115

16
' 69:7

9 85:83.2/ 46 109 53 88 433

5
D 86:6

785

9
' 87:2

10 105:70.10/ 52 136 302

5
D 60:4

108 2 644

25
D 105:76

533

5
D 106:6

11 126:5.6/ 58 166 746

11
' 67:8

130 1 394

11
' 126:7

1 406

11
' 127:8

12 130.25/ 64 199 301

4
D 75:25

154 299

2
D 149:5

1 207

8
' 150:9

The reduced virial coefficients bk [see (3.104)] predicted by the three EoS (7.42),
(7.45), and (7.50) are

b.PY;v/
k D 2.3k � 4/ ; b.PY;c/

k D 3k2 � 3k C 2

2
; b.PY;�/

k D 15k2 � 31k C 18

2k
:

(7.52)

Those virial coefficients are compared with the exact values [25–30] (see Table 3.11)
in Table 7.2, which also includes the CS coefficients. We observe that (7.45)
overestimates the known coefficients, while (7.42) and (7.50) underestimate
them, the chemical-potential route being slightly more accurate than the virial
one. Those trends agree with what can be observed from Fig. 7.5, where
the deviations of the three PY EoS from MD simulation results [31] are
shown.

As we already saw in Fig. 3.22, ZCS is an excellent EoS. On the other hand, since
Z.�/PY is more reliable than Z.v/PY , one may wonder whether an interpolation formula
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Fig. 7.5 Plot of the
deviations Z

.v/
PY .�/� ZMD.�/

(circles), Z.c/PY.�/� ZMD.�/

(squares), and
Z.�/PY .�/� ZMD.�/ (triangles)
for three-dimensional HS
fluids

similar to (7.51), but this time between Z.�/PY and Z.c/PY, i.e.,

Z.�c/ D �Z.�/PY C .1 � �/Z.c/PY ; (7.53)

might be even more accurate. From an analysis of the virial coefficients one can
check that the optimal value of the interpolation parameter is � � 0:4. In particular,
the two choices

� D 2

5
) Z.�c;1/ ; � D 7

18
) Z.�c;2/ (7.54)

are analyzed in Table 7.2 at the level of the virial coefficients, where

b.�c;1/
k D 9k3 C 21k2 � 56k C 36

10k
; b.�c;2/

k D 11k3 C 24k2 � 65k C 42

12k
:

(7.55)
A better general performance than that of the CS coefficients is clearly observed.

The good quality of the compressibility factors Z.�c;1/ and Z.�c;2/ is confirmed by
Fig. 7.6, where again deviations from MD simulation values (ZMD) [31] are plotted
as functions of the packing fraction.
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Fig. 7.6 Plot of the
deviations ZCS.�/� ZMD.�/

(circles), Z.�c;1/.�/� ZMD.�/

(triangles), and
Z.�c;2/.�/� ZMD.�/ (squares)
for three-dimensional HS
fluids

7.3 Percus–Yevick Approximation for Hard-Sphere
and Sticky-Hard-Sphere Mixtures

Just 1 year after Wertheim [2] and Thiele [4] found the exact solution of the (three-
dimensional) OZ equation (7.1) with the PY closure (7.2) for a HS fluid, Joel L.
Lebowitz (see Fig. 7.7) extended the solution to AHS mixtures [5]. Not much later,
in the same paper [9] where Baxter (see Fig. 3.4) had introduced the SHS interaction
model [see (3.4), (3.5), and Table 3.1], he solved it with the PY approximation. The
generalization to (additive) SHS mixtures was subsequently carried out by Perram
and Smith [10] and, independently, by Barboy [11, 12].

Since the SHS multicomponent fluid includes as particular cases both the AHS
mixture and the SHS one-component fluid, we will focus here on the former system.
Moreover, as in Sect. 7.2.4, we will obtain the PY solution by applying the RFA
methodology [15, 32–35].

7.3.1 Sticky-Hard-Sphere Mixtures

7.3.1.1 General Relations

Let us consider a (three-dimensional) multicomponent fluid with a general inter-
action potential �˛�.r/ for particles of species ˛ and � . Similarly to what we
did in the one-component case [see (7.3)], we introduce the Laplace transform of
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Fig. 7.7 Joel L. Lebowitz
(b. 1930) (Photograph
courtesy of P. Cvitanović,
https://www.flickr.com/
photos/birdtracks/
3106543914)

rg˛� .r/:

bG˛� .s/ D
Z 1

0

dr e�srrg˛� .r/ : (7.56)

In analogy to (7.4), the Fourier transform of the total correlation function h˛� .r/ is
given by

Qh˛� .k/ D �2�
"

bH˛� .s/� bH˛� .�s/

s

#

sDik

D �2�
"

bG˛� .s/ �bG˛� .�s/

s

#

sDik

;

(7.57)

where

bH˛� .s/ D bG˛� .s/� s�2 (7.58)

is the Laplace transform of rh˛� .r/. The condition of a finite isothermal compress-
ibility [see (4.74) and (4.79)] implies that Qh˛� .0/ D finite. As a consequence,

s2bG˛� .s/ D 1C bH.0/
˛� s2 C bH.1/

˛� s3 C � � � (7.59)

with bH.0/
˛� D finite and bH.1/

˛� D �Qh˛� .0/=4� D finite, where

bH.k/
˛� � .�1/k

Z 1

0

dr rkC1h˛� .r/ : (7.60)

The behavior of bG˛� .s/ for small s is therefore constrained by (7.59).
Thus far, the interaction potential �˛� .r/ is arbitrary. Now, we first assume that

�˛�.r/ has a SW form characterized by a hard-core diameter �˛� , a well depth "˛� ,
and a well width � 0̨

� � �˛� (see Table 3.1). The degree of “stickiness” of the .˛; �/
pair interaction is measured by the parameter [see (3.4)]

https://www.flickr.com/photos/birdtracks/3106543914
https://www.flickr.com/photos/birdtracks/3106543914
https://www.flickr.com/photos/birdtracks/3106543914
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��1
˛� � 4

2

4

 

� 0̨
�

�˛�

!3

� 1
3

5

�

eˇ"˛� � 1
�

: (7.61)

The SHS fluid corresponds to the combined limits � 0̨
� ! �˛� and "˛� ! 1 with

��1
˛� D finite. In that case, the Mayer function becomes [see (3.5)]

f˛� .r/ D ��.�˛� � r/C �˛�

12�˛�
ı.r � �˛� / ; (7.62)

so that the relationship between the RDF g˛� .r/ and the cavity function y˛� .r/ is

g˛� .r/ D y˛� .r/

	

�.r � �˛� /C �˛�

12�˛�
ı.r � �˛� /

�

: (7.63)

In particular, in the region near contact,

g˛� .r/ D �˛�

12�˛�
y˛� .�˛� /ı.r � �˛� /

C�.r � �˛� /
h

y˛� .�˛� /C y0̨
� .�˛� /.r � �˛� /C � � �

i

: (7.64)

The condition of finite y˛� .�˛� / translates into the following behavior of the Laplace
transformbG˛� .s/ for large s:

e�˛� s
bG˛� .s/ D �2˛�

12�˛�
y˛� .�˛� /C �˛�y˛� .�˛� /s

�1

C
h

y˛� .�˛� /C �˛�y0̨
� .�˛� /

i

s�2 C O.s�3/ : (7.65)

Moreover, from (4.84) we see that the virial EoS for the SHS mixture is given by

Z.v/ D 1C 2�

3
n
X

˛;�

x˛x��
3
˛�y˛� .�˛� /

(

1 � ��1
˛�

12

"

3C �˛�y0̨
� .�˛� /

y˛� .�˛� /

#)

;

(7.66)

where y0̨
� .r/ � @y˛� .r/=@r. Analogously, the energy route becomes (see Table 4.3)

uex D ��
6

n
X

˛;�

x˛x��
3
˛�y˛� .�˛� /

"˛�

�˛�

D ��
6

n
X

˛;�

x˛x��
3
˛�y˛� .�˛� /

@��1
˛�

@̌
(energy route) ; (7.67)
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where (7.63) has been applied in the first step and in the second step we have taken
into account that @��1

˛� =@̌ D "˛��
�1
˛� in the SHS limit [see (7.61)].

The case of a HS system is recovered by taking the limit of vanishing stickiness,
��1
˛� ! 0, in (7.62)–(7.67). It is important to notice that, while e�˛� s

bG˛� .s/ 
 s�1

for large s in the case of HSs [see also (7.21)], one has e�˛� s
bG˛� .s/ 
 s0 in the case

of SHSs. However, the behavior for small s is still given by (7.59), regardless of the
interaction model.

7.3.1.2 Percus–Yevick Approximation

Now we are in conditions of constructing an analytical approximation for bG˛� .s/
(within the spirit of the RFA) consistent with the requirements (7.59) and (7.65). To
that end, we keep a structure similar to that of (7.35), except that we need to deal
with matrices [see (5.31) for the exact one-dimensional solution]. Taking all of this
into account, we construct the approximation

bG˛� .s/ D e��˛� s

s2

n

Λ.s/ � ŒI � Σ.s/��1
o

˛�
; (7.68)

where Λ.s/ and Σ.s/ are the matrices

�˛� .s/ D �.0/
˛� C�.1/

˛� s C�.2/
˛� s2 ; (7.69a)

˙˛� .s/ D 2�nx˛
h

'2.�˛s/�3˛�
.0/
˛� C '1.�˛s/�2˛�

.1/
˛� C '0.�˛s/�˛�

.2/
˛�

i

:

(7.69b)

Here we have restricted ourselves to additive mixtures, i.e., �˛� D 1
2
.�˛ C �� /.

The presence of the terms �.2/
˛� in (7.69) is directly related to the SHS interaction

since �.2/
˛� D 0 in the HS case. In fact, since limx!1 'k.x/ D 0, one simply has

lims!1 e�˛� s
bG˛� .s/ D �

.2/
˛� =2� and then (7.65) implies

�.2/
˛� D �2˛�

12�˛�
y˛� .�˛� / : (7.70)

But (7.65) also imposes the condition that the ratio between the first and second
terms in the expansion of e�˛� s

bG˛� .s/ in powers of s�1 must be exactly equal to

�˛�=12�˛� . Let us see what constraints on the coefficients �.k/
˛� are implied by this

condition.
The property 'k.x/ D .�1/kx�1=kŠC O.x�2/ leads to

Σ.s/ D s�1 NΣ C O.s�2/ ) ŒI � Σ.s/��1 D I C s�1 NΣ C O.s�2/ ; (7.71a)
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Ṅ
˛� D 2�nx˛

�

1

2
�2˛�

.0/
˛� � �˛�

.1/
˛� C�.2/

˛�

�

: (7.71b)

Consequently, the behavior for large s that follows from (7.68) is

e�˛� s
bG˛� .s/ D �.2/

˛� C
h

�.1/
˛� C �

Λ.2/ � NΣ�
˛�

i

s�1 C O.s�2/ : (7.72)

Comparison with (7.65) yields, apart from (7.70),

�˛�y˛� .�˛� / D �.1/
˛� C

X

ı

�
.2/

˛ı
Ṅ
ı� : (7.73)

Elimination of the contact value y˛� .�˛� / between (7.70) and (7.73) gives a
relationship between the matrices Λ.0/, Λ.1/, and Λ.2/. In order to close the problem,
we need two more relations. They are provided by the small-s behavior (7.59),
according to which the coefficients of s0 and s in the power series expansion of
s2bG˛� .s/ must be 1 and 0, respectively. After some algebra, this yields [35]

�.0/
˛�D 1

1 � �
C 3

�

.1 � �/2
M2

M3

�� � �

1 � �

12

M3

X

ı

xı�ı�
.2/

ı� ;

�.1/
˛�D �˛�

1 � �
C 3

2

�

.1 � �/2
M2

M3

�˛�� � �

1 � �

6�˛

M3

X

ı

xı�ı�
.2/

ı� ;

(7.74a)

(7.74b)

where the moments Mk of the size distribution and the total packing fraction � are
defined by (3.70) and (3.116), respectively. Note that �.0/

˛� does not actually depend
on the row index ˛. Finally, inserting (7.74) into (7.73) and combining the result
with (7.70), the following closed bilinear equation for Λ.2/ is obtained:

12�˛��
.2/
˛�

�˛�
D �˛�

1 � �
C 3

2

�

.1� �/2
M2

M3

�˛�� C �
12

M3

X

ı

xı�
.2/

˛ı �
.2/

ı�

� �

1 � �

6

M3

X

ı

xı�ı



�
.2/

˛ı �� C�
.2/

ı� �˛

�

: (7.75)

The physical solution is obtained by the condition lim�˛�!1�
.2/
˛� D 0, in

consistency with (7.70).
Equations (7.68), (7.69), (7.74), and (7.75) fully determine the RDFs (in Laplace

space) for an arbitrary (additive) SHS mixture, as obtained from the simplest
implementation of the RFA [15, 35]. Although not derived explicitly here as the
solution of the OZ relation with the PY closure, it turns out that (7.68), (7.69),
(7.74), and (7.75) actually coincide with such a solution [10–12].
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Fig. 7.8 Cavity functions
y11.r/ D y22.r/ and y12.r/ at
� D 0:4 for an equimolar
binary mixture
(x1 D x2 D 1

2
) with

�1 D �2 D �12 D � . The
solid lines correspond to MC
simulations [36] of a SW
mixture with � 0

1 D � 0
2 D � ,

� 0
12 D 1:01� , "11 D "22 D 0,

and kBT="12 D 0:266. The
dashed lines represent the
analytical solution of the PY
approximation for a SHS
mixture with ��1

11 D ��1
22 D 0

and �12 D 0:2

As a test of the practical usefulness of the PY solution for SHS mixtures, Fig. 7.8
compares the cavity functions predicted by the PY analytical solution with those
obtained from MC simulations of a true short-range SW mixture [36]. A general
good agreement is found, especially in the case of the pair correlation function
y11.r/ D y22.r/ of the particles interacting via the HS potential.

In what concerns the thermodynamic properties, note that the contact values
y˛� .�˛� / are readily obtained from either (7.70) or (7.73). Analogously, the
coefficient of s�2 in the series expansion of e�˛�bG˛� .s/ in powers of s�1 allows
us to identify y0̨

� .�˛� / from (7.65). Then, the virial EoS can be obtained via (7.66).

Furthermore, the coefficient of s3 in the series expansion of s2bG˛� .s/ in powers of

s provides Qh˛� .0/ D �4�bH.1/
˛� and, hence, the isothermal susceptibility [see (4.74)

and (4.79)]. The expressions are too cumbersome to be reproduced here, so we
particularize now to AHS mixtures and to one-component SHS fluids.

7.3.2 Additive Hard-Sphere Mixtures

The AHS case [5, 37] is obtained from the more general SHS system by just setting
��1
˛� D 0 for every pair .˛; �/. In view of (7.70), this implies that �.2/

˛� D 0. Also,

(7.73) gives y˛� .�˛� / D �
.1/
˛� =�˛� , i.e.,

y˛� .�˛� / D g˛� .�
C̨
� / D 1

1 � �
C 3

2

�

.1 � �/2
�˛��

�˛�

M2

M3

; (7.76)
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where use has been made of (7.74b). Insertion of (7.76) into (7.66) (with ��1
˛� D 0)

yields

Z.v/PY D 1

1 � �
C 3�

.1 � �/2
m2

m3

C 3�2

.1 � �/2
m3
2

m2
3

; (7.77)

where the reduced moments mk are defined in (3.123).
The evaluation of bH.1/

˛ˇ from (7.59) is more involved but, however, the associated
expression for the isothermal susceptibility is rather simple:

��1
T;PY D 1

.1 � �/2
C 6�

.1 � �/3
m2

m3

C 9�2

.1 � �/4
m3
2

m2
3

(compressibility route) :

(7.78)
Integration over density [see (1.39)] gives

Z.c/PY D 1

1 � �
C 3�

.1 � �/2
m2

m3

C 3�2

.1 � �/3
m3
2

m2
3

: (7.79)

Note that the virial and compressibility expressions of ZPY differ only in the
numerical value of the negative power of 1 � � in the third term.

If an impurity particle of diameter �0 is added to the AHS mixture, the impurity–
fluid contact value y0˛.�0˛/ is simply given by (7.76) with �� ! �0 since a
single impurity particle does not modify the size moments of the mixture. Then,
the chemical-potential route (4.92) yields [37]

ˇ�ex
�;PY D � ln.1 � �/C 3�

1 � �
m2

m3

��

M1

C 3�

1 � �
�

m2

m3

C 3

2

�

1 � �

m3
2

m2
3

�

�2�
M2

C �

1 � �
�

1C 3
�

1� �

m2

m3

�

�3�
M3

(� route) : (7.80)

The associated (excess) Helmholtz free energy per particle can then be derived from
the fundamental equation of thermodynamics as expressed by the first equality in
(1.37) as

ˇaex
PY D � ln.1 � �/C 3�

1 � �
m2

m3

C 3�2

2.1� �/2
m3
2

m2
3

C3

2

	

6 � 9�C 2�2

.1 � �/2
C 6

ln.1 � �/

�

�

m3
2

m2
3

(� route) : (7.81)
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Applying now the second equality in (1.37) we can obtain the EoS in the chemical-
potential route:

Z.�/PY D 1

1 � �
C 3�

.1 � �/2
m2

m3

� 9

"

1 � 3
2
�

.1 � �/2 C ln.1 � �/

�

#

m3
2

m2
3

: (7.82)

Equations (7.76)–(7.82) represent the extensions to mixtures of (7.38a), (7.42),
(7.44), (7.45), and (7.48)–(7.50), respectively.

The PY expression (7.76) for the contact values is similar to the one derived from
the SPT [21, 23, 38–40]:

y˛� .�˛� / D 1

1 � �
C 3

2

�

.1 � �/2
�˛��

�˛�

M2

M3

C 3

4

�2

.1 � �/3
�

�˛��

�˛�

M2

M3

�2

; .SPT/ :

(7.83)

Interestingly, when the above expression is inserted into the virial EoS (7.66)
(again with ��1

˛� D 0), the result coincides with the PY compressibility-route EoS
(7.79) [see also (3.147)], as happened in the one-component case [see (3.115)
and (7.45)]. A simple, and yet accurate, prescription for the contact values is
obtained, in analogy with (7.51), by a linear interpolation (with respective weights
1
3

and 2
3
) between the PY and SPT results (7.76) and (7.83), respectively. This was

proposed, independently, by Boublík [41], Grundke and Henderson [42], and Lee
and Levesque [43] (BGHLL):

y˛� .�˛� /D 1

1 � �
C 3

2

�

.1 � �/2
�˛��

�˛�

M2

M3

C 1

2

�2

.1 � �/3
�

�˛��

�˛�

M2

M3

�2

; .BGHLL/ :

(7.84)

Obviously, the compressibility factor corresponding to the contact values (7.84)
is equal to 1

3
Z.v/PY C 2

3
Z.c/PY. This EoS was first obtained by Boublík [41] and,

independently, Mansoori, Carnahan, Starling, and Leland [44] (BMCSL):

ZBMCSL D 1

1 � �
C 3�

.1 � �/2
m2

m3

C �2.3 � �/

.1 � �/3
m3
2

m2
3

: (7.85)

The expressions for the excess Helmholtz free energy per particle and for the
compressibility factor, as predicted by the PY and BMCSL approximations, are
displayed in Table 7.3.

As an assessment of the performance of the PY compressibility factors (7.77),
(7.79), and (7.82), as well as of the BMCSL prescription (7.85), Figs. 7.9 and 7.10
compare them against computer simulations [45] for binary mixtures at � D 0:49

and, respectively, �2=�1 D 0:6 and �2=�1 D 0:3. It is observed that, as expected
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Table 7.3 Main thermodynamic quantities as obtained from the PY solution for AHS fluids via
different routes

Route ˇaex Z

v
ln.1� �/

�

3
m3
2

m2
3

� 1

�

C 3�

1� �

1

1� �
C 3�

.1� �/2
m2

m3

C 3�2

.1� �/2
m3
2

m2
3

�
�

m2

m3

C m3
2

m2
3

�

c � ln.1� �/C 3�

1� �

m2

m3

C 3�2

2.1� �/2
m3
2

m2
3

1

1� �
C 3�

.1� �/2
m2

m3

C 3�2

.1� �/3
m3
2

m2
3

� � ln.1� �/C 3�

1� �

m2

m3

C 3�2

2.1� �/2
m3
2

m2
3

1

1� �
C 3�

.1� �/2
m2

m3

C3

2

	

6� 9�C 2�2

.1� �/2
C 6

ln.1� �/

�

�

m3
2

m2
3

�9
"

1� 3
2
�

.1� �/2
C ln.1� �/

�

#

m3
2

m2
3

BMCSL
ln.1� �/

�

m3
2

m2
3

� 1

�

C 3�

1� �

m2

m3

1

1� �
C 3�

.1� �/2
m2

m3

C �2.3� �/

.1� �/3
m3
2

m2
3

C �

.1� �/2
m3
2

m2
3

from the one-component case (see Fig. 7.5), Z.v/PY underestimates the simulation

values, while Z.c/PY overestimates them. The chemical-potential route Z.�/PY lies below

the simulation data, but it exhibits a better behavior than the virial route Z.v/PY . The

weighted average between Z.v/PY and Z.c/PY made in the construction of the BMCSL
EoS (7.85) does a very good job. A slightly better agreement is obtained from the
weighted average between Z.�/PY and Z.c/PY [see (7.53)] with � D 7

18
.

7.3.3 One-Component Sticky Hard Spheres

7.3.3.1 Structural Properties

The special case of a one-component SHS fluid [9, 32, 33] can be obtained from the
multicomponent one by taking �˛� D � and �˛� D � . Thus, from (7.68) and (7.69),
the Laplace transform of rg.r/ becomes

bG.s/ D e�s

s2
�.0/ C�.1/s C�.2/s2

1 � 12�
�

'2.s/�.0/ C '1.s/�.1/ C '0.s/�.2/
� ; (7.86)
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Fig. 7.9 Plot of the
compressibility factor Z as a
function of the mole fraction
x1 for an AHS binary mixture
with a packing fraction
� D 0:49 and a size ratio
�2=�1 D 0:6. The symbols
are computer simulation
values [45], while the lines
stand for (from top to bottom)
(7.79), (7.53) with � D 7

18
,

(7.85), (7.82), and (7.77),
respectively. Note that Z.�c/

and ZBMCSL are hardly
distinguishable

Fig. 7.10 Plot of the
compressibility factor Z as a
function of the mole fraction
x1 for an AHS binary mixture
with a packing fraction
� D 0:49 and a size ratio
�2=�1 D 0:3. The symbols
are computer simulation
values [45], while the lines
stand for (from top to bottom)
(7.79), (7.53) with � D 7

18
,

(7.85), (7.82), and (7.77),
respectively. Note that Z.�c/

and ZBMCSL are hardly
distinguishable

where we have taken � D 1. Moreover, (7.74) reduces to

�.0/ D 1C 2�

.1 � �/2
� 12�

1 � ��
.2/ ; �.1/ D 1C 1

2
�

.1 � �/2
� 6�

1 � �
�.2/ ; (7.87)

and (7.75) becomes the quadratic equation

12��.2/ D 1C 1
2
�

.1 � �/2
� 12�

1 � �
�.2/ C 12��.2/2 ; (7.88)
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Fig. 7.11 Plane � vs � showing the (gray) region inside which the PY approximation does not
possess any real solution for the three-dimensional SHS fluid. The symbols denote the locations of
the critical points (see Sect. 7.3.3.3 below) predicted by the virial (v), compressibility (c), energy
(e), and chemical-potential (�, protocols A, B, and C) routes. In addition, the symbols denoted as
MCa and MCb represent the critical points obtained by MC simulations for the SHS fluid [46, 47]
and by extrapolation to � 0 ! � of MC simulations for the SW fluid, respectively [48]

whose physical root is

�.2/ D 1 � .1� ��1/�� w

2��1.1 � �/�
; (7.89)

where

w �
s

.1 � �/
	

1 � �
�

1 � 2��1 C ��2
3

��

C ��2
2
�2 : (7.90)

It must be remarked that the quantity w ceases to be real if � < �th D 2�p
2

6
'

0:097631 and ��.�/ < � < �C.�/, where

�˙.�/ D
1 � ��1 C 1

6
��2 ˙ 1

2
��1

q

2 � 4
3
��1.1 � 1

12
��1/

1 � 2��1 C 5
6
��2 : (7.91)

In the limit � ! �th one has �˙.�/ ! �th D .3
p
2 � 4/=2 ' 0:12132, while

lim�!0 ��.�/ D 0 and lim�!0 �C.�/ D 2
5
. The dome-shaped region where the PY

approximation does not have a real solution for SHS fluids is shown in Fig. 7.11.



228 7 Exact Solution of the Percus–Yevick Approximation for Hard Spheres . . . and. . .

Fig. 7.12 Cavity function at
� D 0:32. The solid and
dotted lines correspond to
MC simulations of a SW fluid
(with � 0=� D 1:01 and
kBT=" D 0:266) [36] and of a
SHS fluid with � D 0:2 [49],
respectively. The dashed line
represents the analytical
solution of the PY
approximation for a SHS
fluid with � D 0:2

Fig. 7.13 Daan Frenkel (b.
1948) (Photograph courtesy
of D. Frenkel)

In analogy to the HS case in (7.33) and (7.35), combination of (7.15) and (7.86)
allows us to find a rational-function form forbF.s/, namely

bF.s/ D �.0/ C�.1/s C�.2/s2

s3 � 12�
��

1 � s C 1
2
s2
�

�.0/ C s .1 � s/ �.1/ C s2�.2/
� : (7.92)

The RDF is subsequently obtained from (7.18) and (7.19), although some care is
needed to isolate the singular term �.2/ı.r/ from N�1.r/ [see (7.63)].

Figure 7.12 compares the PY cavity function at � D 0:32 and � D 0:2 with MC
simulation results by Miller and Frenkel (see Fig. 7.13) [49]. MC data for a SW fluid
at a reduced temperature T� � kBT=" D 0:266 [36] are also included. Similarly
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to the case of y12.r/ in Fig. 7.8, the main deviations of the theoretical curve with
respect to the simulation results are located around the first minimum of y.r/. On the
other hand, the PY approximation does not account for the singularities (delta-peaks
and/or discontinuities) of the SHS cavity function y.r/ at r D p

8=3; 5=3;
p
3; 2; : : :

[47, 49–53].

7.3.3.2 Equation of State

Let us consider now the thermodynamic properties. The one-component version of
(7.70) is

y.1/ D 12��.2/ : (7.93)

Moreover, the first derivative y0.1/ can be identified from the one-component version
of (7.65) with the result

y0.1/ D �9�.1C �/

2.1 � �/3
� .12� � 1/

1C �=2

.1� �/2

�6
	

�
2 � 11�

.1 � �/2
� 2�

�

12� � 1 � 13�
1 � �

��

�.2/ : (7.94)

Insertion of (7.93) and (7.94) into (7.66) gives the virial EoS

Z.v/PY D1C 2�C 3�2

.1 � �/2
� �

3

1 � 5� � 5�2
.1 � �/3

��1

� 8�

1 � �

 

1C 5�� �

2

1 � 11
2
�

1 � � ��1
!

�.2/ : (7.95)

As for the energy route, combination of the one-component version of (7.67) and
the thermodynamic relation (1.36a) shows that

@.ˇaex/

@��1 D ��y.1/ ) ˇaex D ˇaex
HS � ���1

Z 1

0

dt y.1I �; t��1/ (energy route) ;

(7.96)

where aex
HS is the excess Helmholtz free energy per particle of the HS fluid at the

same packing fraction and the contact function in the integrand is evaluated at a
scaled stickiness t��1. Then, application of (1.36b) gives

Z D ZHS � ���1
Z 1

0

dt
@Œ�y.1I �; t��1/�

@�
: (7.97)
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Use of (7.89), (7.90), and (7.93) allows one to get the following explicit expressions:

ˇaex Dˇaex
HS C 12��.2/ C 6�

1 � � ln

	

24��.2/ .1 � �/2

2C �

�

C
p

6�j2 � 5�j
1 � �

W (energy route) ;

Z.e/PY DZHS C 6�

.1 � �/2 ln

	

24��.2/ .1 � �/2

2C �

�

C 1 � 4�
.1 � �/2

p

6�j2� 5�j
2 � 5�

W ;

(7.98a)

(7.98b)

where

W � cos�1
s

6�

2C �
� cos�1

"s

6�

2C �

�

1 � 2 � 5�
6�.1� �/

�

#

(7.99)

if � < 2
5

but � 62 .��; �C/, and

W � cosh�1
"s

6�

2C �

�

1C 5� � 2
6�.1 � �/

�

#

� cosh�1
s

6�

2C �
(7.100)

if � > 2
5
. We recall that the “constant of integration” ZHS remains undetermined in

the energy route.
As before, the moment bH.1/ of the total correlation function [see (7.25)] can be

obtained from the small-s behavior (7.27). Inserting the resulting expression into
(7.26), one obtains

��1
T;PY D

�

1C 2�� 12�.1� �/�.2/
�2

.1 � �/4 (compressibility route) : (7.101)

The associated compressibility factor is

Z.c/PY D 1 � 3�� �2

.1 � �/3 � 2� 2C �

.1 � �/2 C 8

	

6�2 C 12��

1 � � � �
2� 5�

.1 � �/2
�

�.2/ :

(7.102)

From here, a further integration over density [see (1.36b)] gives

ˇaex
PY D 9C 4w�.5 � 8�/

2.1 � �/2
C 6.9� � 3 � 10w�2/

1 � � � 24�3.1 � w/

�
� ln.1 � �/C 24�3
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C36�2 � 60� C 27

2
C 12�.6� � 1/ ln

ˇ

ˇ

ˇ

ˇ

ˇ

1C w � �.1 � ��1 C 1
6
��2/

2.1 � �/

ˇ

ˇ

ˇ

ˇ

ˇ

�p
2
�

54�2 � 12� C 1
�

ln

ˇ

ˇ

ˇ

ˇ

ˇ

6� � 1 � 2�.3� � 2/C 3
p
2w�

.1 � �/.�=�th � 1/

ˇ

ˇ

ˇ

ˇ

ˇ

(compressibility route) : (7.103)

It is remarkable that, despite the complex density dependence of ��1
T;PY in (7.101),

explicit expressions for Z.c/PY and ˇaex
PY can be found upon integration over packing

fraction from � D 0 to the value of interest. Strictly speaking, in view of Fig. 7.11,
this is allowed only if either � > �th or � < �th and � < ��.�/. On the other
hand, (7.102) and (7.103) can be analytically continued to the region � < �th and
� > �C.�/.

In order to apply the chemical-potential route, we consider a solute particle of
(relative) diameter �0 D 2� � 1 (with 1

2
� � � 1) that interacts with the solvent

particles via an interaction potential �.�/.r/ such that [see (7.62)]

e�ˇ�.�/.r/ D �.r � �/C �

12��
ı.r � �/ ; (7.104)

where ��1
01 D ��1

� measures the degree of stickiness of the solute–solvent interac-
tion. Consequently, (4.52) yields [54]

ˇ�ex.�; �/ D � ln .1 � �/ � 2�
Z 1

1
2

d� �2I .�; �; �/ (� route) ; (7.105)

where

I .�; �; �/ �
 

�
@��1
�

@�
C 3��1

� � 12

!

y.�/01 .�/C ��1
� �

@y.�/01 .r/

@r

ˇ

ˇ

ˇ

ˇ

ˇ

rD�
: (7.106)

As in previous cases, the Helmholtz free energy per particle and the compressibility
factor can be obtained by application of (1.36c) and (1.37), i.e.,

ˇaex.�; �/ D 1C 1 � �

�
ln.1 � �/ � 2�

Z 1

1
2

d� �2
Z 1

0

dt tI .�; t�; �/ ; (7.107a)

Z.�/.�; �/ D � ln.1 � �/

�
� 2�

Z 1

1
2

d� �2
	

I .�; �; �/ �
Z 1

0

dt tI .�; t�; �/

�

:

(7.107b)
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Within the PY approximation, use of (7.65), (7.70), (7.74), and (7.75) allows us to
get [54]

y.�/01 .�/ D 12��

�2
�
.2/
01 ; (7.108a)

�
@y.�/01 .r/

@r

ˇ

ˇ

ˇ

ˇ

ˇ

rD�
C y.�/01 .�/ D 12��

.2/
01

h

3�
�

�.0/ � 2�.1/ C 2�.2/
�2 ��.0/ C�.1/

i

C�.0/ C 6��
.1/
01

�

�.0/ � 2�.1/ C 2�.2/
�

; (7.108b)

with

�
.1/
01 D � C �.2� � 3=2/

.1 � �/2
� 6�.2� � 1/

1 � �
�.2/ ; (7.109a)

�
.2/
01 D

�

12��

�
C 6�

1 � � � 12��.2/

��1
�
.1/
01 : (7.109b)

In order to close the PY determination of the function I .�; �; �/ defined by (7.106)
and hence the chemical-potential route (7.105)–(7.107), we need to fix the �-
dependence of ��1

� , i.e., how the solute–solvent stickiness ��1
� changes from zero to

the system value ��1 as the diameter 2� � 1 increases from zero to unity. Were the
function I .�/ exact, the thermodynamic quantities obtained from (7.105)–(7.107)
would be of course independent of the choice for the protocol ��1

� . As expected, this
is not what happens with the PY approximation [54]. As representative examples,
let us consider the following three prototype protocols:

��1
� D .2� � 1/q��1 ; q D

8

ˆ

ˆ

<

ˆ

ˆ

:

1
2
; Protocol A ;

1 ; Protocol B ;

2 ; Protocol C :

(7.110)

In all of them, the solute–solvent stickiness monotonically grows from zero to the
solvent–solvent value as the solute diameter (�0=� D 2� � 1) grows from zero to
the solvent diameter (� D 1). At a given solute diameter, the strength of the solute–
solvent attraction decreases when going from A to B and from B to C. It can be
verified that the influence of the protocol is practically negligible for all densities
if ��1 . 6 [54]. For higher stickiness, however, the values of the compressibility
factor Z.�/PY from the chemical-potential route become increasingly sensitive to the
protocol chosen. In fact, as might be expected on physical grounds, the stronger the
relative stickiness ��1

� =��1 the smaller the pressure.
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Fig. 7.14 Compressibility
factor Z as a function of the
packing fraction � for SHS
fluids at � D 0:15. The
curves correspond to PY
results from various routes, as
indicated on the plot, while
solid circles (joined by a line
as a guide to the eye)
represent MC results [47]

Figure 7.14 compares MC simulations of the SHS fluid at � D 0:15 [47] with PY
predictions from the different routes. Since, as discussed before, the energy route
leaves ZHS undetermined, it is common to use the CS EoS (3.113) for ZHS despite
the fact that, as discussed in Sect. 6.9.3, the choice (7.42) for ZHS would be more
consistent. It can be observed that in the low-density range (� . 0:15) all PY routes
provide consistent results. For higher densities, the curves corresponding to the three
different protocols of the chemical-potential route remain rather close in comparison
with those from the virial, energy, and compressibility routes, which show a larger
spread. In the range 0:2 . � . 0:4, the chemical-potential route gives the best
agreement with the simulation data. In the same region, Z.e/PY and Z.c/PY overestimate

the simulation values, while Z.v/PY underestimates them. More specifically, up to � �
0:4, one has Z.v/PY < Z.�A/

PY < Z.�B/
PY < Z.�C/

PY < Z.e/PY < Z.c/PY. Finally, there is a rather
strong disagreement of all the PY routes at high densities, 0:4 . � . 0:5, where the
simulation data exhibit lower pressure values than the theoretical ones. Interestingly,
in contrast to the HS case (see Fig. 7.5), the compressibility route shows the largest
deviations from MC results on the whole range of studied densities.

7.3.3.3 Vapor–Liquid Transition

Since the SHS interaction potential possesses an attractive part (although a singular
one), a vapor–liquid critical point .�c; �c/ and a coexistence (or binodal) line for
the (metastable) vapor–liquid phase transition must exist [9, 46, 47, 55, 56]. Given
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Table 7.4 Comparison of the SHS vapor–liquid critical values �c, �c, and ˇc�c from MC
simulations [46–48] and from the PY solution in the virial (v), energy (e), compressibility .c/,
and chemical-potential (�A–�C) routes

MCa MCb v e c �A �B �C

�c 0:1133.5/ 0:1150.1/ 0:1361 0:1185 0:0976 0:1300 0:1262 0:1215

�c 0:266.5/ 0:2890.5/ 0:2524 0:3187 0:1213 0:2645 0:2691 0:2761

ˇc�c �2:438.1/ �2:394.1/ �2:0806 �2:1672 �2:7869 �2:1323 �2:1728 �2:2230
a Miller and Frenkel [46, 47]
b Largo et al. [48]

a compressibility factor Z.�; �/, the critical point is obtained by the conditions
[1, 57, 58]

�

@.�Z/

@�

�

�

D
�

@2.�Z/

@�2

�

�

D 0 : (7.111)

As expected, each thermodynamic route (and each protocol ��1
� in the case of

the chemical-potential route) applied to the PY approximation yields a different
prediction for the critical point. In the special case of the compressibility route, it
can be easily checked from (7.101) (see Exercise 7.49) that both ��1

T;PY and its first
derivative with respect to density vanish at the threshold point .�; �/ D .�th; �th/.
In view of (7.111), this implies that .�th; �th/ coincides with the critical point in the
compressibility route.

The coordinates of the critical point predicted by each PY route, as well
as of the ones obtained from MC simulations for the SHS fluid [46, 47] and
from extrapolation to � 0 ! � of MC simulations for the SW fluid [48], were
already included in Fig. 7.11. The numerical values of �c, �c, and the chemical
potential at the critical point, ˇc�c (with the convention ƒ D � for the thermal
de Broglie wavelength) are given in Table 7.4. Note that the estimates for the
critical parameters proposed in [48] are found to be different (beyond the statistical
error bars) from those reported in [46]. This discrepancy might be related to an
incomplete mapping of the configuration space in the method employed in [46],
which manifests itself in a less complete sampling of the dense region [48]. In
what concerns the PY predictions, it can be observed that the compressibility route
produces a gross underestimation of the critical density. The latter quantity is much
better approximated by the virial route and, especially, the chemical-potential route
for the three protocols considered. On the other hand, the critical value of the
stickiness parameter evaluated from the virial and the compressibility routes differ
significantly from the MC values. For this parameter, the energy route and the
chemical-potential route (especially in the case of protocol C) give the best results.
It must be remarked, however, that the critical point obtained from Z.e/PY is quite
sensitive to the choice of ZHS. If, instead of the CS EoS (3.113), the more consistent
choice (7.42) is used, then no critical point is predicted at all by the energy route.
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Fig. 7.15 Dependence on the
protocol exponent q [see
(7.110)] of the critical
parameters �c, �c, and ˇc�c

as obtained from the PY
approximation in the
chemical-potential route. The
horizontal lines represent the
MC simulation values from
[48], while the vertical line
marks the value q D 5

(protocol D)

An interesting feature from Fig. 7.11 and Table 7.4 is that the location of the
critical point estimated in [48] seems to agree with an extrapolation of the results
obtained via the chemical-potential route as one goes from protocol A to protocol B
and from B to C, i.e., as one increases the value of the exponent q in (7.110). This is
confirmed by Fig. 7.15, which shows that an exponent q � 5 provides an excellent
agreement with the MC data for �c and �c. Even the value of ˇc�c is relatively
well captured by q � 5. We will refer to q D 5 as protocol D, in which case one
has �c D 0:1155, �c D 0:2872, and ˇc�c D �2:2873. Protocol D corresponds to a
solute with a very weak (relative) stickiness (��1

� =��1 . 0:03) for sizes �0=� . 0:5,
followed by a rather rapid increase thereafter.

Below the critical “temperature” �c, a vapor–liquid coexistence line signals
the locus of mechanical and chemical equilibrium between a vapor phase at a
packing fraction �vap.�/ and a liquid phase at a higher packing fraction �liq.�/.
The conditions of equal pressure and chemical potential between both phases
read

�vap.�/Z.�vap.�/; �/ D �liq.�/Z.�liq.�/; �/ ; (7.112a)

ln �vap.�/C ˇ�ex.�vap.�/; �/ D ln �liq.�/C ˇ�ex.�liq.�/; �/ : (7.112b)

Figure 7.16 displays the coexistence line and the location of the critical point derived
from each PY route and from MC computer simulations for the SHS fluid [47].
As mentioned in connection with Table 7.4, it should be noted that the MC data
derived in [47] may be affected by an incomplete sampling of the configuration
space for the liquid phase [48]. In any case, it may be concluded that the coexistence
curves obtained from the virial and compressibility routes differ substantially from
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Fig. 7.16 Phase diagram of
the SHS fluid showing the
vapor–liquid coexistence
lines from the PY solution in
the virial (v), energy (e),
compressibility .c/, and
chemical-potential (�A–�D)
routes. MC simulation data
taken from [47] are shown
with error bars. The critical
points are indicated with
symbols

Fig. 7.17 Michael Ellis
Fisher (b. 1931) (Photograph
courtesy of M.E. Fisher)

computer evaluations. On the contrary, the agreement is reasonably good for the
energy (provided that ZHS D ZCS) and chemical-potential (protocol D) routes.

The peculiar properties of the critical region predicted by the PY approximation
with the compressibility route were analyzed in detail by Fishman and Fisher (see
Fig. 7.17) in [59]. If � � �th and � � �th, it can be shown that (7.101) becomes

��1
T;PY � c1



p

c2t C 2x2 � x
�2

; (compressibility route) ; (7.113)

with c1 D 4
81
.3C 2

p
2/ and c2 D 18.

p
2 � 1/, and where

t � �

�th
� 1 ; x � �

�th
� 1 : (7.114)
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While the critical exponents [57] derived from (7.113) take the so-called classical
or mean-field values, the functional dependence of ��1

T;PY on t and x differs from
the mean-field one ��1

T � c1.c2t C x2/. This gives rise to a number of anomalies
[59]. For instance, the critical isotherm (t D 0) is highly asymmetric since ��1

T;PY �
c1.

p
2  1/2x2, where the upper (lower) sign corresponds to x > 0 (x < 0). A

similar asymmetry exists between the vapor and liquid branches of the coexistence
line near the critical point, as can be observed in Fig. 7.16. On the other hand, the
remaining thermodynamic routes are free from those anomalies and present a fully
mean-field critical behavior.

7.4 Beyond the Percus–Yevick Approximation

In Sects. 7.2.4 and 7.3.1.2 we have found the exact solutions of the PY integral
equation for HSs and (more generally) for SHS mixtures, respectively, without
explicitly addressing the mathematical problem of solving the OZ relation [see
(4.26) and (4.76)] with the PY closure [see (6.65)]. Instead, we started from
the ansätze (7.31) and (7.68) and then univocally determined the parameters
by imposing physical conditions reflected in the exact behavior of the Laplace
transforms bG.s/ and bG˛� .s/ in the regimes of small s and large s. This defines the
RFA methodology, as described on p. 204, in its simplest implementation, i.e., when
the number of unknowns equals the number of constraints.

Apart from recovering the PY solution by an alternative procedure, the RFA
approach can be applied beyond the PY approximation to some model systems.
Those systems can be classified into two categories: (1) those that admit an exact
solution of the PY approximation and (2) those that are not exactly solvable within
the PY approximation. In the first class of systems, the RFA method recovers the PY
solution as the simplest possible approach and, furthermore, the next-order approach
allows one to make contact with a given empirical EoS in a thermodynamically
consistent way, thus contributing to a general improvement of the predictions. This
method has been applied to three-dimensional one-component HS and SHS fluids
[13–15, 33], their additive mixtures [15, 34, 35, 60–62], and hard hyperspheres
[17, 63, 64].

The application of the RFA to systems of the second class (i.e., those lacking
an exact PY solution) includes the PS model [65, 66], the PSW model [67], the
SW potential [68–70], the SS potential [71], piecewise-constant potentials with
more than one step [72, 73], NAHS mixtures [74–76], and Janus particles with
constrained orientations [77]. In those cases, the simplest RFA is already quite
accurate, generally improving on the (numerical) solution of the PY approximation.

Let us finish this chapter by considering the HS and SW fluids as representative
examples of systems of the first and second class, respectively.
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7.4.1 Hard Spheres

In the spirit of the RFA (7.30) for HSs, the next-order approximation is obtained
with k D 2, i.e.,

bF.s/ D � 1

12�

1C L.1/sCL.2/s2

1C S.1/s C S.2/s2 C S.3/s3CS.4/s4
: (7.115)

From the exact series expansion (7.29) one now has

L.1/ D L.1/PY C 12�

1C 2�

	

1

2
L.2/ � S.4/

�

; (7.116a)

S.1/ D S.1/PY C 12�

1C 2�

	

1

2
L.2/ � S.4/

�

; (7.116b)

S.2/ D S.2/PY C 12�

1C 2�

	

1 � 4�

12�
L.2/ C S.4/

�

; (7.116c)

S.3/ D S.3/PY � 12�

1C 2�

	

1 � �

12�
L.2/ C 1

2
S.4/

�

; (7.116d)

where L.1/PY, S.1/PY, S.2/PY, and S.3/PY are given by (7.32).
So far, the two new coefficients L.2/ and S.4/ remain free. They can be conve-

niently fixed by imposing any desired contact value g.1C/ (or compressibility factor
Z) and the corresponding consistent isothermal susceptibility �T D Œ@.�Z/=@���1.
First, the exact condition (7.23) fixes the ratio L.2/=S.4/, so that

L.2/ D �3.Z � 1/S.4/ : (7.117)

Besides, from (7.22) we can obtain the first derivative at contact as

g0.1C/ D � 1

12�S.4/

	

L.1/ � L.2/
�

1C S.3/

S.4/

��

: (7.118)

Higher-order derivatives can be obtained in a similar way [78].
Next, the expansion (7.28) allows us to identify bH.1/ and, by means of (7.26),

relate �T , L.2/, and S.4/. Using (7.117), one gets a quadratic equation for S.4/ [14],
whose physical solution is

S.4/ D 1 � �

36�.Z � 1
3
/

2

41 �
v

u

u

t1C Z � 1
3

Z � Z.v/PY

�

�T

�T;PY
� 1

�

3

5 ; (7.119)

where Z.v/PY and �T;PY are given by (7.42) and (7.44), respectively. In real space,
the RDF is still given by (7.18) and (7.37), except that in (7.37a) the summation



7.4 Beyond the Percus–Yevick Approximation 239

Fig. 7.18 RDF of a
three-dimensional HS fluid at
a reduced density n� D 0:9

(� D 0:471) as obtained by
MD simulations [31] and
from the PY and RFA
approaches

P3
iD1 ! P4

iD1 extends over the four roots of the quartic equation 1CS.1/sCS.2/s2C
S.3/s3 C S.4/s4 D 0. Explicit expressions of g.r/ up to the second coordination shell
� � r � 3 can be found in [79].

Figure 7.18 compares MD results of g.r/ at n� D 0:9 (see Fig. 4.4) [31] with
the predictions obtained from the PY solution (7.31) and from the next-order RFA
(7.115). In the latter, Z and �T have been chosen as given by the CS EoS [see (3.113)
and (3.114a)]. We observe that both theories describe quite well the behavior of
g.r/ but the PY approximation underestimates the contact value and then decays
by crossing the simulation data. Both features are satisfactorily corrected by the
next-order RFA.

Once bG.s/ is fully determined, the Fourier transforms Qh.k/ and Qc.k/ and the
static structure factoreS.k/ can be explicitly obtained from (7.4), (4.27), and (4.24),
respectively. By Fourier inversion, it is possible to find an analytical expression of
the DCF in real space [15, 80]. Its functional form is

c.r/ D

8

ˆ

<

ˆ

:

KC
e�r � 1

r
� .K� C K/

1 � e��r

r
C K0




1C �

2
r3
�

C K1r ; r < 1 ;

K
e��r

r
; r > 1 ;

(7.120)

with

K D g.1C/C KC .e� � 1/� K� .1 � e��/C K0



1C �

2

�

C K1: (7.121)



240 7 Exact Solution of the Percus–Yevick Approximation for Hard Spheres . . . and. . .

The expressions for the amplitudes KC, K�, K0, and K1 and for the damping
coefficient � can be found elsewhere [15]. Note that c.0/ D finite and that (7.121)
implies c.1C/ � c.1�/ D g.1C/, what is consistent with the expected continuity of
the indirect correlation function �.r/ D h.r/� c.r/ at r D 1.

In contrast to the PY result (7.40), now the DCF c.r/ does not vanish outside
the hard core (r > 1) but has a Yukawa form in that region. In fact, the RFA
(7.115) coincides with the solution of the so-called generalized mean spherical
approximation (GMSA) [6, 81, 82], where the OZ relation is solved with the
Yukawa closure c.r/�.r �1/ D Kr�1e��r�.r �1/. The RFA starting point (7.115),
however, is mathematically much more economical and open to applications to other
systems.

As said before, a similar RFA scheme to construct an augmented PY approxima-
tion has also been implemented for AHS [15, 34, 60–62], SHS fluids [13–15, 33, 35],
and hard hyperspheres in odd dimensions [17, 63, 64].

7.4.2 Square-Well and Square-Shoulder Fluids

Now we consider the SW interaction potential (see Table 3.1). Since no exact
solution of the PY approximation for this potential is known (except in the special
SHS limit analyzed in Sect. 7.3.3), the application of the RFA method is more
challenging in this case than for HS and SHS fluids.

As in previous cases, the key quantity is the Laplace transform of rg.r/ defined
by (7.3). It is again convenient to introduce the auxiliary function bF.s/ through
(7.15), where the choice � D 1 as length unit is made. As before, the conditions
g.r/ D finite and �T D finite imply (7.23) and (7.29), respectively. On the other
hand, the key difference between the HS and SW cases is that in the latter case
bG.s/ and bF.s/ must reflect the fact that the RDF g.r/ is discontinuous at the well
range r D � 0 as a consequence of the discontinuity of the potential �SW.r/ and the
continuity of the cavity function y.r/. This implies that bG.s/, and hencebF.s/, must
contain the exponential term e�.� 0��/s. This is already obvious in the low-density
limit, where the condition lim�!0 y.r/ D 1 yields

lim
�!0

bF.s/ � bF0.s/ D s�3
h

e1=T�

.1C s/ � e�.� 0�1/s.e1=T� � 1/.1C � 0s/
i

;

(7.122)

where, as usually, T� � kBT=".
Therefore, any minimal approximation for the auxiliary function bF.s/ must

contain at least five tunable parameters in order to accommodate for the exact form
(7.29) for small s, behave as bF.s/ 
 s�2 for large s, and be consistent with the
functional structure (7.122). Within the framework of the RFA methodology, the
simplest possible form that complies with all these requirements [compare with
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(7.31)] seems to be [68]

bF.s/ D � 1

12�

1C NL.0/ C L.1/s � e�.� 0�1/s � NL.0/ C NL.1/s�

1C S.1/s C S.2/s2 C S.3/s3
; (7.123)

where it is already guaranteed that lims!0
bF.s/ D �1=12� but the six coefficients

NL.0/, L.1/, NL.1/, S.1/, S.2/, and S.3/ are functions of �, T�, and � 0 yet to be determined.
Condition (7.29) allows one to express the parameters L.1/, S.1/, S.2/, and S.3/ as
linear functions of NL.0/ and NL.1/ [68, 69], i.e.,

L.1/ D L.1/PY � �

� 0 � 1� 1C 1
2
�.� 03 C � 02 C � 0 C 1/

1C 2�
NL.0/ C 1C 2�� 03

1C 2�
NL.1/ ; (7.124a)

S.1/ D S.1/PY � �.� 0 � 1/2
2

� 02 C 2� 0 C 3

1C 2�
NL.0/ C 2�.� 03 � 1/

1C 2�
NL.1/ ; (7.124b)

S.2/ D S.2/PY � .� 0 � 1/2
2

1 � �.� 0 C 1/2

1C 2�
NL.0/ C .� 0 � 1/1 � 2�� 0.� 0 C 1/

1C 2�
NL.1/ ; (7.124c)

S.3/ D S.3/PY C .� 0 � 1/2
6

� 0 C 2 � �. 3
2
� 02 C � 0 C 1

2
/

1C 2�
NL.0/ � � 0 � 1

2

� 0 C 1 � 2�� 02

1C 2�
NL.1/ ;

(7.124d)

where, as in (7.116), the HS quantities L.1/PY, S.1/PY, S.2/PY, and S.3/PY are given by (7.32).
Note that consistency of (7.123) with (7.122) requires

lim
�!0

NL.0/ D e1=T� � 1 ; (7.125a)

lim
�!0

NL.1/ D � 0



e1=T� � 1
�

: (7.125b)

Again, we can apply (7.22) to get the contact values [compare with (7.38)]

g.1C/ D � L.1/

12�S.3/
; (7.126a)

g0.1C/ D � 1

12�S.3/

	

1C NL.0/ � L.1/
�

1C S.2/

S.3/

��

: (7.126b)

The full RDF can be obtained from (7.18) and (7.19). Since, in contrast to the
HS and SHS cases [see (7.31) and (7.92), respectively], the auxiliary functionbF.s/
in (7.123) includes an exponential term, we need to expand ŒbF.s/�` as

h

bF.s/
i` D

X̀

kD0

 

`

k

!

e�k.� 0�1/s
bF`k.s/ ; (7.127a)
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bF`k.s/ � .�1/`�k

.12�/`

�

1C NL.0/ C L.1/s
�`�k � NL.0/ C NL.1/s�k

�

1C S.1/s C S.2/s2 C S.3/s3
�`

: (7.127b)

Therefore,

N�`.r/ D
X̀

kD0

 

`

k

!

N�`k.r � k� 0 C k/�.r � k� 0 C k/ ; (7.128)

where

N�`k.r/ D L �1 hsbF`k.s/
i

.r/ D
X̀

jD1

P3
iD1 a.i/`kje

sir

.` � j/Š.j � 1/Š
r`�j ; (7.129a)

a.i/`kj D lim
s!si

�

@

@s

�j�1 h
s.s � si/

`
bF`k.s/

i

: (7.129b)

As in (7.37), fsi; i D 1; 2; 3g are the three roots of the cubic equation 1 C S.1/s C
S.2/s2 C S.3/s3 D 0. In particular, in the first coordination shell (1 < r < 2), and
assuming � 0 < 2, one has

g.r/ D � 1

12�r

3
X

iD1

siesi.r�1/

S.1/ C 2S.2/si C 3S.3/s2i

h

1C NL.0/ C L.1/si

� � NL.0/ C NL.1/si
�

e�si.�
0�1/�.r � � 0/

i

; .1 < r < 2/ : (7.130)

To complete the construction of the proposal, we need to determine the param-
eters NL.0/ and NL.1/ by imposing two new conditions. An obvious condition is the
continuity of the cavity function y.r/ at r D � 0, what implies

g.� 0C/ D e�1=T�

g.� 0�/ : (7.131)

If � 0 < 2 this yields



1 � e�1=T�
� N�10.� 0 � 1/ D � N�11.0/, i.e.,

NL.1/
S.3/

D



1 � e�1=T�
�

3
X

iD1

siesi.�
0�1/ �1C NL.0/ C L.1/si

�

S.1/ C 2S.2/si C 3S.3/s2i
; (7.132)

where we have made use of the Laplace property N�11.0/ D lims!1 s2bF11.s/ D
NL.1/=12�S.3/. We still need an extra condition. As a convenient compromise between
simplicity and accuracy, we can fix the parameter NL.0/ at its exact zero-density limit
value (7.125a), i.e., [68]

NL.0/ D e1=T� � 1 : (7.133)
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This closes the determination of the six parameters entering in (7.123). Notice
that (7.132) becomes a closed transcendental equation for NL.1/ that needs to
be solved numerically. Once solved, and together with (7.133), the remaining
parameters are simply obtained from (7.124). Therefore, the RFA provides a semi-
analytical description of the SW fluid.

It can be proved [68, 69] that the RFA proposal (7.123) reduces to the exact
solutions of the PY approximation both in the HS limit (" ! 0 or � 0 ! 1) and in the
SHS limit (" ! 1 and � 0 ! 1with � D finite) [see (7.31) and (7.92), respectively].
In fact, the latter limit has been exploited to replace the exact condition (7.131) by
a simpler one in the case of narrow SW potentials [69]. This allows one to replace
the transcendental equation (7.132) by an algebraic one from which NL.1/ can be
obtained analytically, which is especially useful for determining the thermodynamic
properties [69, 83].

Comparison with computer simulations [68–70, 83] shows that the RFA for SW
fluids is rather accurate at any fluid density if the potential well is sufficiently narrow
(� 0=� . 1:2), as well as for any width if the density is small enough (n� D n�3 .
0:4). This is illustrated in Figs. 7.19, 7.20, and 7.21 for three representative cases,
where it can be observed that the semi-analytical RFA (which otherwise tends to
be less accurate near the discontinuity at r D � 0) competes favorably well with
the numerical solution of the OZ relation complemented by the PY closure. On the

Fig. 7.19 RDF of a
three-dimensional SW fluid
for � 0=� D 1:05, T� D 0:5,
and n� D 0:8. The circles
represent MC simulation data
[70], the solid line refers to
the results obtained from a
numerical solution of the PY
approximation, and the
dashed line corresponds to
the (semi-analytical)
prediction from the RFA
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Fig. 7.20 RDF of a
three-dimensional SW fluid
for � 0=� D 1:5, T� D 1:5,
and n� D 0:4. The circles
represent MC simulation data
[70], the solid line refers to
the results obtained from a
numerical solution of the PY
approximation, and the
dashed line corresponds to
the (semi-analytical)
prediction from the RFA

Fig. 7.21 RDF of a
three-dimensional SW fluid
for � 0=� D 2, T� D 3, and
n� D 0:4. The circles
represent MC simulation data
[70], the solid line refers to
the results obtained from a
numerical solution of the PY
approximation, and the
dashed line corresponds to
the (semi-analytical)
prediction from the RFA

other hand, as the width and/or the density increase, the RFA predictions worsen,
especially at low temperatures [70].

From Table 3.1 we can see that the purely repulsive SS potential can be formally
defined from the well-known SW potential by the replacement " ! �". As a
consequence, even though both interaction potentials are physically very different,
the implementation of the RFA for SS fluids is as simple as formally setting
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Fig. 7.22 RDF of a
three-dimensional SS fluid
for � 0=� D 1:2, T� D 0:5,
and � D 0:4. The circles
represent MC simulation data
[84], the solid line refers to
the results obtained from a
numerical solution of the PY
approximation, and the
dashed line corresponds to
the (semi-analytical)
prediction from the RFA

Fig. 7.23 RDF of a
three-dimensional SS fluid
for � 0=� D 1:5, T� D 0:5,
and n� D 0:4. The circles
represent MC simulation data
[85], the solid line refers to
the results obtained from a
numerical solution of the PY
approximation, and the
dashed line corresponds to
the (semi-analytical)
prediction from the RFA

T� ! �T� in (7.125a) and (7.132), the remaining equations, in particular (7.123),
(7.124), and (7.126)–(7.130), being the same [71]. The RFA results for two SS
systems are compared with numerical solutions of the PY approximation and MC
simulations [84, 85] in Figs. 7.22 and 7.23. It can be seen that, despite being much
simpler, the RFA turns out to be more accurate than the PY approximation.
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7.4.2.1 General Piecewise-Constant Potentials: Continuum Limit

Let us conclude this chapter by showing that the RFA structure of the auxiliary
functionbF.s/ in (7.123) can be extended to more general J-step piecewise-constant
potentials of the form

�.r/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

1 ; r < � ;
"1 ; � < r < �1 ;
"2 ; �1 < r < �2 ;
:::

:::

"J ; �J�1 < r < �J ;

"JC1 D 0; r > �J :

(7.134)

In such a case, (7.123) can be generalized as [72, 73]

bF.s/ D � 1

12�

1CPJ
jD1 NL.0/j C L.1/s �PJ

jD1 e�.�j�1/s

 NL.0/j C NL.1/j s

�

1C S.1/s C S.2/s2 C S.3/s3
; (7.135)

where, as before, we have taken � D 1 as the length unit. The proposal (7.134)
contains 2J C 4 parameters, so we need the same numbers of conditions. Four
of them are provided by (7.29), while J additional ones are obtained from the
requirement of continuity of the cavity function y.r/ at r D �j, j D 1; : : : ; J. This
yields (assuming �J < 2) [72, 73]

NL.1/j

S.3/
D

3
X

iD1

�

eˇ."j�"jC1/ � 1
�

si

S.1/ C 2S.2/si C 3S.3/s2i

2

4

j�1
X

j1D1


 NL.0/j1
C NL.1/j1

si

�

e.�j��j1 /si

�
0

@1C
J
X

j1D1
NL.0/j1

C L.1/si

1

A e.�j�1/si

3

5 ; j D 1; : : : ; J ; (7.136)

where, as before, fsi; i D 1; 2; 3g are the three roots of the cubic equation
1 C S.1/s C S.2/s2 C S.3/s3 D 0. It is straightforward to check that (7.135) and
(7.136) reduce to (7.123) and (7.132), respectively, if J D 1. As done in (7.133), the
remaining J conditions can be provided by the assumption that the parameters NL.0/j
are independent of density, so that they are determined by their exact zero-density
limits, namely [72, 73]

NL.0/j D e�ˇ"j � e�ˇ"jC1 ; j D 1; : : : ; J : (7.137)

Comparisons of the predictions from the RFA (7.135) against computer simulations
for two-step potentials show a general good agreement [73].
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It is tempting to take the continuum limit J ! 1 with a finite cutoff �J � � 0.
Before taking the limit, let us first assume J D finite and equispaced values of �j,

i.e., �j D 1 C j	� � �j, with 	� � .� 0 � 1/=J. We also define NL.0/�j
� NL.0/j =	�,

NL.1/�j
� NL.1/j =	�, and �.�j/ � "j. Next, taking the limit J ! 1, (7.135)–(7.137)

become

bF.s/ D �
1C R � 0

1
d� NL.0/� C L.1/s � R � 0

1
d� e�.��1/s


 NL.0/� C NL.1/� s
�

12�
�

1C S.1/s C S.2/s2 C S.3/s3
� ; (7.138a)

NL.1/�
S.3/

D �
3
X

iD1

ˇ�0.�/si

S.1/ C 2S.2/si C 3S.3/s2i

"

Z �

1

d�1

 NL.0/�1 C NL.1/�1 si

�

e.���1/si

�
 

1C
Z � 0

1

d�1 NL.0/�1 C L.1/si

!

e.��1/si

#

; 1 � � � � 0 ; (7.138b)

NL.0/� D e�ˇ�.�/ˇ�0.�/ : (7.138c)

Equation (7.138b) defines a nonlinear integral equation for the continuous function
NL.1/� that needs to be solved in the finite interval 1 � � � � 0. Once (numerically)
solved, (7.138a), together with (7.14), allows us to obtain the RDF g.r/ for all
distances, including r > � 0.

Exercises

7.1 Derive (7.1).

7.2 Check (7.4).

7.3 Derive (7.9) from (3.72) and (7.8).

7.4 Making use of the mathematical property (check it!)

Z 1

0

dx xk.x/e�x D kC1.0/ D .2k C 1/ŠŠ ;

derive (7.10).

7.5 Check (7.12) and (7.13).

7.6 Derive (7.17)–(7.19).

7.7 Derive (7.21) and (7.23).

7.8 Check (7.28) and (7.29).
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7.9 Check (7.32).

7.10 Take the limit � ! 0 in (7.32) to prove that (7.31) is consistent with the exact
expressions (7.13).

7.11 Check (7.33)–(7.35).

7.12 Taking into account that the complex residue of a function f .z/ at a pole z0 of
order ` is

1

.` � 1/Š lim
z!z0

�

d

dz

�`�1
�

.z � z0/
`f .z/

�

and that

�

d

dz

�`�1
Œf1.z/f2.z/� D

X̀

jD1

 

` � 1

j � 1

!"

�

d

dz

�`�j

f1.z/

#"

�

d

dz

�j�1
f2.z/

#

;

prove (7.37) from (7.19).

7.13 Derive (7.38)–(7.40).

7.14 Check from (7.40) that c.1�/ D �.1 C �=2/=.1 � �/2. Then, taking into
account (7.38a), check that the indirect correlation function �.r/ D h.r/ � c.r/ is
continuous at r D 1, as expected.

7.15 Download and install the Wolfram CDF Player (http://www.wolfram.com/
cdf-player) in your computer. Play with the Demonstration of reference [20] to
explore how the RDF, the structure factor, the DCF, and the bridge function of the
three-dimensional HS fluid (as described by the PY approximation) change with the
packing fraction �.

7.16 Derive (7.42)–(7.45).

7.17 Reobtain (7.44) as limk!0
eS.k/ from (7.39).

7.18 Obtain (7.48)–(7.50).

7.19 Prove that the (excess) Helmholtz free energy per particle corresponding to
the PY virial and compressibility EoS (7.42) and (7.45) are

ˇaex
PY;v D 6�

1 � �
C 2 ln.1 � �/ ;

ˇaex
PY;c D 3

2

�.2 � �/
.1 � �/2 � ln.1 � �/ ;

respectively. Compare with (7.49). Check that the three routes are consistent with
the exact behavior ˇaex D 4�C 5�2 CO.�3/. Reobtain the CS expression (3.114b)
as 1

3
ˇaex

PY;v C 2
3
ˇaex

PY;c.

http://www.wolfram.com/cdf-player
http://www.wolfram.com/cdf-player
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7.20 Check the entries of Table 7.1 not derived explicitly in Chaps. 3 or 7.

7.21 Derive (7.66) and (7.67).

7.22 Check (7.71)–(7.73).

7.23 Prove (7.74).

7.24 Derive (7.75).

7.25 Prove that (7.47) follows from (7.76) in the special case of a binary HS mixture
with x0 ! 0 and �1 D 1.

7.26 Derive (7.77) and (7.79) from (7.76) and (7.78), respectively.

7.27 Derive (7.80)–(7.82).

7.28 Check that (7.76)–(7.82) reduce to (7.38a), (7.42), (7.44), (7.45), and (7.48)–
(7.50), respectively, in the special case of a common diameter �˛ D � , regardless
of the mole fractions.

7.29 Express the (excess) chemical potential ˇ�ex
�;PY in (7.80) as a function of the

set of number densities fn�g. Then, check the following violation of a Maxwell
relation:

�

@̌ �ex
�;PY

@n˛

�

fn�¤˛g
�
�

@̌ �ex
˛;PY

@n�

�

fn�¤�g
D 3�

2

�2

.1 � �/3
M2
2

M2
3

�2˛�
2
� .�˛ � ��/ :

7.30 Obtain (7.79) from (7.83) by application of (7.66) with ��1
˛� D 0.

7.31 Starting from the SPT contact values (7.83), obtain the excess chemical
potential ��;SPT from (4.92). Then, derive the excess Helmholtz free energy per
particle aex and the compressibility factor Z by application of (1.37). Does the
resulting Z coincide with (7.79)? In other words, are the virial and chemical-
potential thermodynamic routes mutually consistent in the SPT? Hint: Consult [37]

7.32 Repeat Exercise 7.29 but for the (excess) chemical potential ˇ�ex
�;SPT derived

in Exercise 7.31. Check that in the SPT one consistently has

�

@̌ �ex
�;SPT

@n˛

�

fn�¤˛g
D
�

@̌ �ex
˛;SPT

@n�

�

fn�¤�g
:

7.33 Check that (7.85) reduces to (3.113) in the special case of a common diameter
�˛ D � , regardless of the mole fractions.

7.34 Compare the BMCSL EoS (7.85) with the generic proposals (3.126b),
(3.127b), and (3.146) when in the three latter the CS EoS (3.113) is used for Zoc.�/.
As numerical tests, consider, for instance, the mixtures of Figs. 3.26, 7.9, and 7.10.

7.35 Check the entries of Table 7.3 not derived explicitly in Sect. 7.3.2.
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7.36 Compare Table 7.3 with Tables 3.12 and 7.1.

7.37 Check that (7.89) is the solution to (7.88).

7.38 Prove from (7.89) that, in the limit of weak stickiness, �.2/ D ��1.1 C
�=2/=12.1��/2CO.��2/. Then, by applying that limit to (7.93) and (7.94), recover
the HS results (7.38).

7.39 Derive (7.92).

7.40 Derive (7.94) and (7.95).

7.41 Check the correctness of (7.98)–(7.100).

7.42 Derive (7.101)–(7.103).

7.43 Check from (7.101) that

��1
T;PY

ˇ

ˇ

�D�th;�D�th
D @��1

T;PY

@�

ˇ

ˇ

ˇ

ˇ

ˇ

�D�th;�D�th

D 0 :

7.44 Check from (7.101) that, if � < �th, then ��1
T;PY D 0 at � D �0.�/ where

�0.�/ D
3 � ��1 � 9

2

q

4 � 8
3
��1.1� 1

12
��1/

12 � 7��1 :

Does that mean that the scaled pressure �Z.c/PY.�; �/ presents a local minimum at
� D �0.�/?

7.45 Take carefully the limit ��1 ! 0 to check that (7.93), (7.94), (7.95), and
(7.102) reduce to (7.38a), (7.38b), (7.42), and (7.45), respectively.

7.46 Check (7.105)–(7.107).

7.47 Derive (7.108) and (7.109).

7.48 Check that, in the limit � ! 1, (7.108) and (7.109) are consistent with (7.87),
(7.88), (7.93), and (7.94).

7.49 Prove that (7.95), (7.98b), (7.102), and (7.105) are all consistent with the first
three exact virial coefficients, i.e.,

Z D 1C .4� ��1/�C
�

10 � 5��1 C ��2 � ��3

18

�

�2 C O.�3/ :

7.50 Plot the scaled pressure �Z.e/PY.�; �/ for � D 0:20, 0:15, and 0:10 from (7.98b)

with the choice ZHS.�/ D Z.v/PY .�/ given by (7.42). Do those isotherms exhibit a
physically acceptable behavior?



References 251

7.51 Reproduce the numerical values in Table 7.4 and in Fig. 7.15 corresponding
to the PY approximation.

7.52 Derive (7.113).

7.53 Obtain (7.116).

7.54 Check (7.118) and (7.119).

7.55 Check (7.122).

7.56 Prove that (7.122) reduces to (7.13a) either in the limit � 0 ! 1 or in the limit
T� ! 1.

7.57 Check (7.124)–(7.126).

7.58 Check (7.127)–(7.130).

7.59 Derive (7.138).
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194, 196–198, 203, 206, 211, 212,
214, 216, 217, 220, 222, 228, 229,
233, 237–241, 243, 248–250

Additive, 39, 52, 63, 66–68, 70–72,
78–80, 87, 91, 147, 149, 217,
220–223, 225, 226, 237, 240

Nonadditive, 39, 66, 71, 78, 125, 146,
150–152, 155, 237

Lennard-Jones, 37, 56, 57, 90, 102, 111,
183

Penetrable spheres, 37, 55, 89, 168, 183,
188, 195–198, 237

Penetrable square well, 89, 90, 188, 237
Soft, 183, 184, 189, 191, 192
Square shoulder, 37, 55, 111, 125, 140–144,

154, 167, 183, 194–197, 237, 240,
244, 245

Square well, 37, 55, 56, 89, 111, 125, 135,
136, 138–140, 146, 154, 155, 166,
167, 183, 189, 218, 222, 227, 228,
234, 237, 240, 243, 244

Sticky hard rods, 125, 141, 144–146, 148,
149, 155

Sticky hard spheres, 38, 55, 89, 111,
141, 181, 203, 217, 219–222, 225,
227–229, 233–237, 240, 241, 243

Yukawa, 184
Internal energy. see Thermodynamic potentials,

Internal energy

Intersection volume, 65, 66, 165, 166
Isothermal compressibility. see Response

functions, Isothermal
compressibility

Isothermal susceptibility. see Response
functions, Isothermal susceptibility

Isothermal–isobaric ensemble. see Statistical
ensembles, Isothermal–isobaric

Kirkwood–Buff integral, 117, 134

Lagrange multiplier method, 18, 20, 21, 23, 24,
30

Laplace transform, 28, 125, 126, 129–132,
137, 145, 147, 203, 205, 208, 209,
217–219, 225, 237, 240

Legendre transformation, 4–6, 11
Lennard-Jones potential. see Interaction

potentials, Lennard-Jones
Linearized Debye–Hückel approximation, 182,

183, 189–192
Liouville theorem, 14

Maxwell relations, 6, 7, 10, 24, 135, 154, 190,
199, 249

Mayer function, 33, 34, 38, 39, 64, 89, 109,
166, 219

Mean spherical approximation. see Integral
equations, Mean spherical
approximation

Microcanonical ensemble. see Statistical
ensembles, Microcanonical

Microstate, 13, 15–17
Mixtures, 1, 9, 13, 29, 39, 50, 63, 66–68, 70,

71, 78, 87, 115, 117–119, 123, 131,
146, 181, 185, 188, 197, 199, 203,
204, 213, 217, 219, 221–224, 226,
237, 240, 249

Binary, 52, 91, 118, 133, 146
Polydisperse, 87

Mole fraction, 1, 50, 80, 115, 120, 226
Molecular dynamics. see Computer

simulations, Molecular dynamics
Monte Carlo simulations. see Computer

simulations, Monte Carlo

Nearest-neighbor interactions, 39, 125, 157
Nonadditive hard spheres. see Interaction

potentials, Hard spheres,
Nonadditive

Normalization condition, 16, 18
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Number density, 2, 9, 22, 24, 33, 39–41, 47,
48, 57, 62, 63, 72, 80, 99, 102, 111,
115, 116, 120, 125, 129, 135, 137,
157, 161, 164, 165, 171, 175, 177,
183–185, 197, 206, 239

One-dimensional systems, 39, 60, 125, 136,
138–144, 146, 148–152, 154, 155,
157, 220

Ornstein–Zernike relation, 104–106, 117, 138,
170, 174, 175, 177, 184, 203, 211,
217, 221, 237, 240, 243

Packing fraction, 54, 72, 74, 75, 77, 78, 80, 84,
89, 121, 149–151, 154, 155, 206,
211, 212, 216, 221, 226, 229, 233,
248

Partition functions, 20, 25, 26
Canonical, 18, 27
Configuration integral, 27, 28, 39, 41, 110,

112, 115, 125
Grand canonical, 20, 21, 28, 41, 43, 158
Isothermal–isobaric, 23, 28
Microcanonical, 16, 31
One-particle, 27

Penetrable spheres. see Interaction potentials,
Penetrable spheres

Penetrable square-well potential. see
Interaction potentials, Penetrable
square well

Percus–Yevick approximation. see Integral
equations, Percus–Yevick

Phase space, 13
Phase-space probability density, 13–15, 97
Planck constant, 15
Potential energy. see Energy, Potential
Potential of mean force, 165, 183
Pressure, 2, 5, 6, 9, 10, 20, 21, 24, 27, 39, 47,

48, 57, 74, 75, 84, 108, 111, 129,
143, 232, 250

Radial distribution function, 97, 101, 102, 106,
110–112, 116, 120, 122, 125, 127,
129, 137, 138, 142, 144, 145, 148,
150, 152, 154, 155, 157, 164, 165,
179, 184, 206, 210, 211, 219, 221,
228, 238–241, 243–245, 247, 248

Virial expansion, 157
Random-phase approximation, 184

Rational-function approximation, 203, 204,
209, 211, 217, 220, 221, 237–240,
243–246

Reduced distribution functions, 97
Response functions, 6

Heat capacity at constant pressure, 6
Heat capacity at constant volume, 6, 19
Isothermal compressibility, 7, 10, 22, 107,

111, 218
Isothermal susceptibility, 10, 130, 134, 154,

222, 223, 238
Thermal expansivity, 7

Reverse Bessel polynomials, 205

Scaled Particle Theory. see Equation of state,
Hard spheres, Scaled Particle
Theory

Square-shoulder potential. see Interaction
potentials, Square shoulder

Square-well potential. see Interaction
potentials, Square well

Statistical ensembles, 13, 15, 25–27, 106
Canonical, 18, 19, 21, 22, 25, 28, 30, 39,

99–101, 106, 108, 116, 118
Equivalence, 19, 22, 25, 27, 41, 128
Grand canonical, 20, 22, 23, 29, 41, 46,

98–101, 106, 116, 118, 158
Isothermal–isobaric, 23, 25, 125, 128, 130,

132, 155
Microcanonical, 16, 17, 19, 22, 30

Sticky hard rods. see Interaction potentials,
Sticky hard rods

Sticky hard spheres. see Interaction potentials,
Sticky hard spheres

Stirling approximation, 27
Structure factor, 103, 107, 139, 140, 144, 149,

154, 205, 211, 212, 239, 248
Systems

Adiabatic, 3
Closed, 4, 18
Isolated, 1, 16
Isothermal–isobaric, 5, 23
Open, 6, 20

Temperature, 2, 4, 6, 10, 17, 18, 21, 24, 27,
37–39, 50, 55–57, 90, 103, 109, 111,
120, 129, 137, 154, 157, 158, 183,
185, 188, 189, 194

Negative, 17
Thermal de Broglie wavelength, 27, 30, 234
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Thermal energy, 17, 24, 112
Thermal expansivity. see Response functions,

Thermal expansivity
Thermodynamic limit, 14, 16, 17, 19, 22, 25,

27, 41, 100, 101, 126, 128
Thermodynamic potentials, 1, 11, 26, 27, 130

Enthalpy, 11
Entropy, 1, 15–18, 21, 23
Free enthalpy, 5
Gibbs free energy, 5, 130, 134, 155
Grand potential, 6
Helmholtz free energy, 4, 5, 10, 18, 77,

79–86, 111–113, 120, 122, 192, 214,
223, 224, 229, 231, 248, 249

Internal energy, 1, 10, 18, 19, 27, 111, 120,
135, 136, 141, 155

Thermodynamic routes, 106, 113, 118, 119,
122, 168, 212, 214, 225, 234

Chemical potential, 97, 109, 111, 112,
114, 119–121, 179–181, 213–215,
223–225, 227, 231–236, 249

Compressibility, 97, 106, 107, 113, 118,
120, 130, 154, 170, 179–182, 185,
187, 198, 204, 213, 214, 223, 224,
227, 230, 233–236, 248

Consistency, 122, 157, 179, 180, 182, 184,
204, 212, 249

Energy, 97, 107, 113, 114, 119, 120, 145,
154, 179, 188–192, 194, 195, 197,
219, 227, 229, 233, 234, 236

Free energy, 97, 111, 113, 114, 119–121,
123, 192

Virial, 97, 108, 109, 113, 114, 119, 120,
122, 155, 170, 179–182, 185, 187,
189–192, 197, 198, 204, 212, 214,
215, 219, 222–224, 227, 229,
233–236, 248, 249

Thermodynamics
First law, 1
Fundamental equation, 2, 10, 223
Second law, 1

Total correlation function. see Correlation
functions, Total

Translational invariance, 27, 99, 109, 161

Ursell functions. see Cluster functions

Virial coefficients. see Equation of state, Virial
coefficients

Virial expansion. see Equation of state, Virial
expansion

Virial series. see Equation of state, Virial
expansion

Volume, 1, 5, 9, 13–15, 23, 24, 27, 28, 31, 40,
108, 109, 128

Widom insertion method, 110
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